MASON - A Multi-Agent LLM Framework for No-Code Development

Muhammed Roshan Palayamkot, Kayvan Karim

! Association for the Advancement of Artificial Intelligence
Heriot Watt University Dubai
mroshan5722 @gmail.com, K.Karim@hw.ac.uk

Abstract

The rise of No-Code Development (NCD) has enabled citizen
developers to build applications without traditional program-
ming expertise. However, as these platforms scale to handle
complex, interdependent tasks, their limitations become ap-
parent. Large Language Models (LLMs) offer a potential so-
lution, yet single-agent systems often struggle to manage full-
stack development reliably.

This study introduces MASON—a Multi-Agent System
(MAS) for Open No-code development framework—that co-
ordinates specialized LLM agents via a YAML-based work-
flow to automate NCD tasks. The system was evaluated
across four proprietary models—Claude 3.5 Sonnet, GPT-
40 Mini, Gemini 1.5 Flash, and DeepSeek-Chat—using Hu-
manEval and MBPP benchmarks to assess accuracy, execu-
tion time, and stability. MASON configurations showed im-
proved task reliability in simpler workflows but introduced
latency on more complex tasks. Additional testing with small,
locally hosted LLMs revealed significant limitations, empha-
sizing the need for architectural redesign or model fine-tuning
to support deployment in resource-constrained environments.

Code — https://github.com/mrp2003/MASON

HumanEval Dataset —
https://github.com/openai/human-eval

MBPP Dataset — https://github.com/google-
research/google-research/tree/master/mbpp

Introduction

No-code development (NCD) platforms have revolutionized
software creation by enabling non-technical users to build
applications through visual interfaces and prebuilt compo-
nents (Beranic, Rek, and Hericko 2020; Sufi 2023; Martinez
and Pfister 2023; ALSAADI et al. 2021). Despite their ac-
cessibility, these platforms struggle with scalability and co-
ordination when handling complex, multi-stage workflows
(Di Ruscio et al. 2022; Pinho, Aguiar, and Amaral 2023;
Luo et al. 2021; Yan 2021; Bock and Frank 2021; Shen et al.
2024).

Large Language Models (LLMs) have demonstrated re-
markable success in automating programming tasks (Lin,
Kim et al. 2024; Touvron et al. 2023; Shen et al. 2023; Xie

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2023; Schifer et al. 2023; AlOmar et al. 2024; Ma et al.
2024b,c). Their ability to understand natural language, gen-
erate code, and reason across contexts makes them promis-
ing tools for enhancing NCD. However, standalone LLMs
still suffer from issues like hallucinations (Yang et al. 2023;
Zhang et al. 2023; Talebirad and Nadiri 2023; Bang et al.
2023) and poor performance on long, interdependent tasks
(Ma et al. 2024a), limiting their reliability in isolation.

Recent research has addressed these challenges by inte-
grating LL.Ms into Multi-Agent Systems (MAS), where spe-
cialized agents collaborate, communicate, and share contex-
tual knowledge (He, Treude, and Lo 2024; Liu et al. 2023b;
Yuan et al. 2023; Talebirad and Nadiri 2023; Du et al. 2023;
Liang et al. 2023a). This modular design supports task del-
egation—such as code generation, validation, and packag-
ing—offering a more scalable and robust approach to NCD
automation.

However, most MAS frameworks rely on high-capacity
proprietary LLMs, restricting deployment in privacy-
sensitive environments or regions with limited connectivity.
In contexts like healthcare, education, or remote field op-
erations, relying on external APIs may be infeasible due to
legal, ethical, or infrastructural constraints. This raises a key
question: Can small, open-source LLMs support MAS-based
NCD as effectively as large proprietary models? If so, such
systems could lower barriers to intelligent automation glob-
ally.

This study investigates that question by applying a
MAS framework—originally designed for large models—to
small, locally hosted LLMs. The results motivated two
future directions: redesigning MAS frameworks for low-
resource compatibility or fine-tuning smaller LLMs to func-
tion within existing orchestration strategies. To do this, we
developed MASON using a YAML-based CrewAl setup
with specialized agents and sequential coordination.

Background

NCD has empowered non-technical users to build appli-
cations through intuitive interfaces and prebuilt compo-
nents (Beranic, Rek, and Hericko 2020; Sufi 2023; Mar-
tinez and Pfister 2023; ALSAADI et al. 2021). Despite their
accessibility, these platforms often struggle to scale with
complex workflows that require error handling, long-term
state management, or external system integration (Di Rus-

cio et al. 2022; Pinho, Aguiar, and Amaral 2023; Luo
et al. 2021; Shen et al. 2024). While cross-platform tools
and blockchain-enabled solutions have extended the reach
of NCDs (Curty, Hérer, and Fill 2022; Solanky, Patil,
and Patel 2016), usability and performance remain lim-
ited. Comparative studies show that enterprise-level readi-
ness—particularly in areas like security, resource manage-
ment, and governance—Ilags behind expectations (Sahay
et al. 2020; Balamurugan et al. 2023). Automation through
rule-based workflows and optimization models (Bahsi, Cey-
han, and Kosar 2007; Logeshwaran et al. 2023; Karamthulla,
Malaiyappan, and Tillu 2023) adds complexity that non-
developers often find difficult to manage, highlighting the
need for intelligent, adaptive backend systems.

In response, LLMs have gained traction for automating
code and content generation across a variety of domains
(Wang et al. 2024; Lin, Kim et al. 2024; Touvron et al. 2023;
Xie et al. 2023). Their ability to generalize language pat-
terns and generate human-like responses makes them valu-
able in software automation. However, limitations such as
hallucinations (Yang et al. 2023; Zhang et al. 2023), con-
text size constraints (Peng et al. 2006), and their reliance
on expensive compute infrastructure raise questions about
their feasibility in scalable deployment (Aubry et al. 2024;
Shabir et al. 2024). Techniques such as memory-augmented
reasoning (Miret and Krishnan 2024), architectural innova-
tions (Perez et al. 2024; Liu et al. 2023a), and optimization
strategies (Sarumi and Heider 2024; Liang et al. 2023b) of-
fer promising advances, but many of these remain theoreti-
cal or benchmark-bound. These constraints have prompted
research into lighter alternatives, particularly in resource-
constrained or offline environments.

One such direction is the use of MAS powered by LLMs.
MAS frameworks distribute tasks across multiple special-
ized agents, each responsible for subtasks like prompt gen-
eration, code evaluation, or validation. This modularity im-
proves robustness and fault tolerance, especially in work-
flows where complex, interdependent actions must be co-
ordinated (Liu et al. 2023b; Yuan et al. 2023; Goonatilleke
and Hettige 2022). Several MAS-based frameworks have
emerged in recent literature, demonstrating varying degrees
of success across benchmark and real-world environments.

Among them, MetaGPT (Hong et al. 2023) simulates a
software development team using SOP-driven agents such
as Product Manager, QA Engineer, and Architect. It per-
forms decomposition of requirements into artifacts like re-
quirement docs, design diagrams, and code, showing im-
provements in code executability across HumanEval and
MBPP. However, it lacks support for UI or frontend code and
struggles with flexibility in unstructured workflows. Simi-
larly, CodePori (Rasheed et al. 2024) employs six collabora-
tive agents—ranging from Dev and Finalizer to Verification
agents—to generate production-ready code using prompt re-
finement. It achieves 89% on HumanEval but focuses heav-
ily on structured pipelines and GPT-tier APIs, making it un-
suitable for lightweight or highly interdependent workflows.

AgentLite (Liu et al. 2024) introduces a customizable,
lightweight agent framework with modular reasoning blocks
like PromptGen, Actions, and Memory. It has been applied

in sandbox tasks like retrieval-augmented QA and image
captioning, but lacks validation in end-to-end application
development and real-world agent orchestration. TrainerA-
gent (Li et al. 2023) tackles model training pipelines using
Task, Data, Model, and Server agents. It was validated on
the Taobao platform in tasks like Visual Grounding and Text
Classification but still requires human intervention for com-
plex or under-specified scenarios.

Other frameworks explore structural coordination and au-
tonomy. SoA (Ishibashi and Nishimura 2024) introduces
hierarchical agents—Mother and Child—to manage task
decomposition and refinement, achieving high benchmark
scores but leaving communication overhead and system re-
liability underexplored. Talebirad and Nadiri (Talebirad and
Nadiri 2023) propose a graph-structured MAS with dynamic
agent addition and self-feedback, yet fail to evaluate per-
formance under real-world constraints or ethical concerns.
Similarly, LCG (Lin, Kim et al. 2024) simulates traditional
workflows like Scrum and Waterfall, assigning LLM agents
roles such as developer, tester, and scrum master. It reports
a 31.5% improvement over GPT baselines but is evaluated
only on synthetic benchmarks with limited generalizability.

Finally, He et al. (He, Treude, and Lo 2024) present an or-
chestration platform for agent collaboration using role-based
coordination between QA Engineers and Project Managers.
While conceptually robust, the framework lacks empirical
validation and detailed implementation for deployment at
scale, especially with smaller LLMs.

These frameworks illustrate the increasing interest in ap-
plying MAS to software automation, but most rely on large
proprietary LLMs, pre-defined workflows, or fixed APIs.
Their generalization to dynamic, full-stack no-code work-
flows—especially in low-resource environments—remains
untested. This paper addresses that gap by proposing MA-
SON: a CrewAl-based, YAML-orchestrated MAS system
that coordinates small, open-source LLM agents for code
generation and validation. Unlike previous systems, MA-
SON evaluates both local and cloud-based agents under
shared experimental conditions, enabling insights into relia-
bility, scalability, and feasibility across diverse settings.

Methodology

The design and development of MASON focused on au-
tomating and streamlining complex tasks using LLM agents.
The primary objective was to construct an autonomous agen-
tic system capable of managing the full application lifecy-
cle—from interpreting user input to generating and validat-
ing executable code—while maintaining compatibility with
multiple LLM backbones.

Agentic Frameworks
To support multi-agent collaboration, several agentic frame-
works were evaluated for their suitability in orchestrating
LLM-based agents within a NCD context. The focus was
on identifying a framework that offered ease of implemen-
tation, robust coordination, and compatibility with diverse
LLMs.

Among the evaluated frameworks, AutoGen (AG) of-
fered advanced orchestration capabilities and fine-grained

agent control but required extensive configuration and had
a steep learning curve, making it less suitable for rapid de-
ployment (Wu et al. 2023). LangChain (LC), while strong
in integrating LLMs with external tools, focused primarily
on tool-assisted workflows rather than native multi-agent
coordination, limiting its suitability for fully autonomous
agent systems (Topsakal and Akinci 2023). In contrast, Cre-
wAI(Duan and Wang 2024) provided a lightweight, declara-
tive architecture with YAML-based configuration, enabling
native multi-agent workflows, simplified role assignment,
and seamless LLM integration—making it ideal for fast pro-
totyping and experimentation (Duan and Wang 2024; Bar-
barroxa, Gomes, and Vale 2024).

Ultimately, CrewAI(Duan and Wang 2024) was selected
for its balanced feature set, clear task sequencing, and stable
execution, aligning with the project’s need to support multi-
ple LLM backbones and repeated testing without orchestra-
tion overhead.

Criteria AG | LC | CrewAl
Learning Curve No | No | Yes
Multi-Agent Support Yes | No | Yes
Integration Ease Yes | Yes | Yes
LLM Compatibility Yes | Yes | Yes
Task Sequencing Support Yes | No | Yes
Lightweight Setup No | Yes | Yes
Community Support Yes | Yes | Yes
Stability in Repeated Tasks Yes | Yes | Yes
Suitability for No-Code Tasks | No | No | Yes

Table 1: Framework Comparison for MAS Deployment

Role Assignment and Agent Initialization

MASON was structured around a collaborative, sequen-
tial workflow where LLM agents were assigned special-
ized roles with distinct goals, responsibilities, and execution
parameters, all defined via YAML configuration files. Each
agent played a specific part in the development pipeline, as
outlined in Table 2.

Agent Name
Input Parser

Role Description

Extracts actionable details from
user input.

Converts parsed data into a struc-
tured software specification.
Produces Python code matching the
software spec and adhering to best
practices.

Validates code for errors and checks
compliance with unit tests.

File Output | Packages validated code into
Specialist an executable Python file
(output.py).

Requirements
Analyzer
Code Generator

Code Validator

Table 2: Agent Roles and Their Specialized Responsibilities

Each agent’s goal and backstory were fine-tuned
to guide LLM reasoning. Tasks were mapped to agents

and executed sequentially, with each output feeding into the
next.

Agent roles and tasks were initialized using Cre-
wAID’'s(Duan and Wang 2024) agent-task configuration sys-
tem. YAML files defined role behavior, tools, and execution
parameters. This setup enabled detailed control but intro-
duced several challenges during initialization.

A major challenge was clearly defining task boundaries
between reasoning and execution, which required extensive
prompt tuning and experimentation. Early designs explored
merged or split agent roles—for example, combining pars-
ing and analysis—but these led to ambiguous responsibili-
ties and degraded coordination. The current five-agent struc-
ture was chosen for its clarity, modularity, and consistent
performance in pilot tests, striking a balance between spe-
cialization and workflow simplicity.

Collaborative Workflow Management

With agents and tasks initialized, attention shifted to design-
ing an effective collaboration workflow where agents could
operate autonomously yet cohesively. CrewAI’s(Duan and
Wang 2024) sequential execution model enabled controlled
task handover, predictable behavior, and tight coupling be-
tween steps—ensuring smooth progression from input pars-
ing to code generation and final output.

User Input: The process began with user-defined
data—typically a software request—being input, serving as
the entry point for the pipeline.

Task Sequence: Agents executed their roles in a fixed or-
der:

Requirement Code

Analysis Generation Validation File Output

Input Parsing

Figure 1: This sequence ensured clarity in task boundaries
and smooth data progression.

Communication: Task outputs were seamlessly passed
between agents using task context, with CrewAI(Duan and
Wang 2024) managing execution flow, retries, and error re-
covery in the background.

Self-Thought and Feedback: Agents were empowered
with limited self-correction capabilities. If unexpected out-
comes were detected, agents could re-evaluate their outputs
within a feedback loop, enhancing workflow reliability with-
out requiring human intervention.

To support specific agent actions—such as saving the final
validated code—a set of CrewAl tools, including FileWriter-
Tool, was integrated seamlessly into the system. The frame-
work’s LLM-agnostic design allowed agents to interact with
different models via API, enabling flexible reasoning strate-
gies and supporting comparative evaluation across LLM
providers.

Tools and Technologies Used

The development process initially prioritized the use of
small, locally hosted LLMs to evaluate whether a fully
self-contained, offline-compatible MAS could be achieved.

Models were deployed using Ollama, an open-source plat-
form that supports on-device inference. It also enabled com-
pliance with data governance policies by keeping all com-
putation and user data entirely on-device. The local models
tested—including multiple versions of Qwen2.5, Gemma3,
LLaMA3, and DeepSeek R1—are listed in Table 3.

Local Models | Model Versions Tested
(via Ollama) Provider

Qwen2.5 Alibaba 0.5B, 1.5B, 3B, 7B
Qwen2.5-Coder | Alibaba 0.5B, 1.5B, 3B, 7B
Gemma3 DeepMind 1B, 4B

LLaMA3.2 Meta Al 1B, 3B

LLaMA3.1 Meta Al 8B

DeepSeek R1 DeepSeek 1.5B, 7B, 8B

Table 3: Local Models

Despite its appeal, the local setup faced practical lim-
itations. Models frequently encountered memory exhaus-
tion, latency spikes, and produced incomplete or incoherent
outputs—especially in multi-step workflows requiring sus-
tained reasoning. While some failures stemmed from CPU-
only execution, the primary issue was the limited capac-
ity of small models to support role-specific collaboration
in MASON. Quantitatively, models with 0—1.5B parameters
achieved a 0% pass rate, 3—4B parameter models reached
just 6%, and even 7-8B models only managed 11%, under-
scoring consistent failure across scales.

These results highlight that MASON’s design depends
heavily on the reasoning strength and output reliability of the
underlying LLM. Small models failed to complete even ba-
sic tasks, pointing to the need for architectural adjustments
or model-level fine-tuning for lightweight deployment.

To validate the system under stable conditions, develop-
ment shifted to high-performance, cloud-based LLMs via
official APIs. This enabled consistent execution, reduced
failures, and allowed for direct benchmarking across diverse
LLM architectures. The cloud models used in this phase are
listed in Table 4.

(main.py) that orchestrated agent interaction and metric
evaluation.

The load_tasks () function loaded benchmark tasks
from a predefined dataset using a fixed seed for consistent
sampling. crew.kickoff (inputs) managed agent co-
ordination and sequential task execution based on the input
specification, test cases, and function name. After code gen-
eration, run_tests () validated the output by dynamically
importing the generated script and executing the associated
unit tests. Finally, evaluate_pass_at_1 () recorded re-
sults and computed the pass@]1 score across all completed
tasks, providing a standardized metric for LLM perfor-
mance.

The development process began with framework setup
and evolved through iterative testing using preset prompts
of varying difficulty. This approach progressively refined the
system’s ability to handle a range of task-based experiments
designed to evaluate agent interaction, execution reliability,
and overall MASON performance. Four distinct tasks were
devised, each targeting a specific dimension of functionality,
complexity, or scalability, as summarized in Table 5.

Experiment Task Description | Objective

Simple App Calculator ~ with | Validate base-
Basic Ul and Logic | line MASON

functionality

Game App Tic-Tac-Toe with | Assess logic
Console UI and | handling and
Game Logic interaction

Real-World App | Trading App with | Test integration
API Integration) capabilities

Stress Test

E-commerce Cart
System (Scalabil-

ity)

Evaluate system
limits and re-
covery

API Models Used | Model Provider
GPT-40 Mini OpenAl

Claude 3.5 Sonnet | Anthropic

Gemini 1.5 Flash | Google DeepMind
DeepSeek-Chat DeepSeek

Table 4: Cloud Based Models

These models were selected to assess how architecture
and provider-specific capabilities influence agent perfor-
mance in a multi-agent setting. Integration was achieved us-
ing official APIs, while CrewAl(Duan and Wang 2024) man-
aged orchestration and workflow across all setups, ensuring
compatibility and consistency.

To support these evaluations, a custom framework was de-
veloped to standardize task execution and logging across dif-
ferent models. This was implemented using a Python script

Table 5: Overview of experimental tasks designed to test
MASON robustness and flexibility.

Several debugging techniques were employed to support
these evaluations. Trial-and-error testing was crucial early
on to identify issues in prompt design and task flow. Fre-
quent reference to CrewAl documentation helped resolve
configuration questions, while detailed error logs informed
improvements in prompt structure and agent responsibilities.

Managed By CrewAl

Requirement Code Code
Analysis Generation Validation
Task Task Task

File Output
Task

Parse Input
Task

Cod
User Input Parser Requirement Code v ‘gte File Qutput Output
ot Analysis Generation aldation ph

9 Agent Agent Agent

Input Layer Processing Layer Output Layer

Figure 2: System Architecture

System Architecture Diagram

To encapsulate the MASON design, Figure 2 presents an
overview of the complete system architecture, including
agent interactions, task sequencing, and coordination logic.
The workflow is structured into distinct layers—input han-
dling, processing, and output generation—managed through
CrewAI’s(Duan and Wang 2024) orchestration. Each layer
contributes a specific function in the pipeline, from parsing
user inputs to producing validated Python code. Feedback
loops ensure resilience and recovery during execution.

Evaluation

The performance and reliability of MASON was evaluated
against a conventional single-agent LLM setup to determine
the effectiveness of coordinated, task-specialized execution.
Both architectures were tested under identical conditions,
using the same inputs and evaluation criteria, ensuring that
observed differences could be attributed solely to system de-
sign.

Evaluation Design and Rationale

Central to this comparison were two performance indicators.
The first was Execution Time, which served as a straightfor-
ward measure of system efficiency — specifically, how long
each system or model took to process and respond to a task.
This metric highlighted underlying differences in model ar-
chitecture, processing coordination, and system overhead.
For MASON, execution time also captures inter-agent han-
dovers and feedback loop costs.

The second was Pass Rate, evaluated using the Pass@
score — a standard metric for assessing the correctness of a
solution generated in a single attempt. Since both MASON
and single LLM systems generated only one solution per
task, this metric provided an accurate gauge of first-attempt
success. The solution was validated via unit tests, and suc-
cess was logged sequentially for all tasks in the test. Along-
side this, fail counts were recorded to identify patterns of
instability or failure under specific conditions.

The Pass@ I score was calculated using the following for-
mula:

NumberofSuccess fullyPassedT asks

Total NumberofTasksAttempted

Together, these metrics provided a balanced view of speed
vs reliability, allowing an informed comparison between
MASON and single-agent LLMs across a range of chal-
lenges.

PassQl1 =

Evaluation Setup and Conditions

Assessing system capability requires more than just measur-
ing performance metrics — it demands a level playing field.
To isolate the effect of system design, all experiments were
conducted under strictly controlled conditions. Four leading
LLMs—GPT-40 Mini, Claude 3.5 Sonnet, Gemini 1.5 Flash,
and DeepSeek-Chat—were tested both independently and
within MASON, using identical prompts, APIs, and runtime
settings. Each of MASON’s agent used the same underly-
ing LLM, ensuring any differences stemmed from architec-
ture rather than model variance. CrewAlI(Duan and Wang

2024) handled agent orchestration, task flow, retries, and
inter-agent communication in all MASON runs.

In addition, smaller local models (e.g., LLaMA3, Gemma,
Qwen) were tested to assess the feasibility of resource-
constrained deployment. These consistently failed to gener-
ate valid or complete outputs under MASON, highlighting
the need for architectural redesign or fine-tuning to support
smaller models.

Task Dataset and Sampling

The choice of evaluation tasks plays a critical role in reveal-
ing the strengths and limitations of a system. For this study,
the tasks were curated from two established benchmarks:
HumanEval and MBPP, selected for their diversity and
real-world relevance. A fixed random seed was used to sam-
ple 50 tasks from each dataset, ensuring consistency. Each
system was evaluated three times per dataset, and scores
were averaged to reduce anomalies. No retries or result cor-
rections were permitted, ensuring that every result reflected
true system capability.

Evaluation Environment

All experiments were run on a local development machine
(Asus Zenbook OLED 13, PopOS) with no dedicated GPU.
While this limited throughput, it ensured a controlled en-
vironment free from network variability or cloud-side noise.
Each run was executed sequentially, without batching or par-
allelism, allowing direct attribution of results to system de-
sign.

Evaluation Framework and Logging

A custom Python framework automated all evaluation
steps—from task loading to result validation—removing hu-
man error and ensuring consistent execution. Logs captured
key metrics such as taskID, execution time, agent interac-
tions and task outcomes. This structured format ensured
reproducibility and enabled fair downstream comparisons
across setups. A sample log entry is shown below.

Task ID: HumanEval/1l6

Execution Time: 12.67 seconds
Number of Agent Interactions: 5
Status: Passed

Performance Assessment

System performance was evaluated along two key dimen-
sions: execution efficiency and solution reliability. Execu-
tion time measured how quickly each setup processed tasks,
reflecting not only processing speed but also architectural ef-
ficiency. MASON runs additionally captured overhead from
inter-agent coordination, with longer times indicating in-
creased complexity or latency.

Reliability was assessed using the Pass@ score, repre-
senting the rate of successful first-attempt completions with-
out retries. This metric offered a clear measure of system
accuracy under pressure.

To interpret results, each LLM was first tested individ-
ually to establish a performance baseline. These outcomes
were then compared to MASON runs using the same mod-
els, isolating the impact of task specialization and collab-
oration. Further analysis across HumanEval and MBPP re-
vealed how dataset complexity influenced performance un-
der different architectures.

Together, these comparisons highlighted the trade-offs be-
tween coordination overhead and improved task distribution,
offering a deeper understanding of how system design and
LLM selection affect practical coding performance.

Results
Execution Time Analysis

Execution time measured how quickly each system pro-
cessed tasks across different models, architectures, and
datasets. Figure 3 and Table 6 show average execution times
for MASON and single-agent setups.

MASON consistently introduced higher processing time
across all models. The overhead was most pronounced in
DeepSeek-Chat and Gemini 1.5 Flash, where MASON ex-
ecution time more than doubled compared to single-agent
runs. In contrast, GPT-40 Mini and Claude 3.5 Sonnet
showed smaller timing differences, suggesting more effi-
cient orchestration. MASON delays were also greater in the
HumanEval (HE) dataset, likely due to its higher task com-
plexity.

of

Figure 3: Execution Time by Model and Tasks

Model HE-M | HE-S | MBPP-M | MBPP-S
Claude 39.92 36.18 | 30.72 15.84
3.5 Sonnet

DeepSeek- | 134.50 | 60.74 | 139.25 43.45
Chat

Gemini 25.59 8.79 23.35 4.81
1.5 Flash

GPT-40 15.65 13.54 | 15.94 6.51
Mini

Table 6: Average Execution Time Comparison

Pass Rate (Accuracy) Analysis

Accuracy scores measured how reliably each model pro-
duced correct outputs on the first attempt across datasets and
system configurations. Figure 4 and Table 7 show average
Pass@1 Scores for MASON and single-agent setups.
Claude 3.5 Sonnet achieved the highest and most stable
accuracy overall, showing strong consistency in both MA-
SON and single-agent modes. DeepSeek-Chat improved no-
tably under MASON for MBPP tasks, suggesting benefits

from task specialization in simpler scenarios. GPT-40 Mini
showed minor gains with MASON, while Gemini 1.5 Flash
underperformed in MASON on HumanEval tasks, likely due
to difficulties with coordination and complex reasoning. Ac-
curacy was generally more stable in MBPP, whereas Hu-
manEval introduced greater variance due to higher task com-
plexity.

Figure 4: Pass Rate by Model and Tasks

Model HE-M | HE-S | MBPP-M | MBPP-S
Claude 0.85 0.87 0.89 0.82
3.5 Sonnet

DeepSeek- | 0.77 0.76 0.87 0.85
Chat

Gemini 0.57 0.79 0.79 0.77
1.5 Flash

GPT-40 0.73 0.71 0.81 0.79
Mini

Table 7: Average Pass@1 Score Comparison

Failure Patterns and Error Density

Figure 5: Cumulative Fail Dips over Tasks per Task

Failure trends from Figure 5 revealed how system design
and task complexity influenced model robustness. Gemini
1.5 Flash showed sharp early failures under MASON, espe-
cially on HumanEval, suggesting difficulties with coordina-
tion and reasoning. MASON generally triggered earlier fail-
ure onset than single-agent systems, highlighting fragility
during initial execution phases when inter-agent communi-
cation overhead is highest. Complex tasks in HumanEval led
to greater error density, while MBPP remained more stable
across models.

As illustrated in Figure 6, HumanEval exhibited denser
fail zones than MBPP, especially between Tasks 5-10,

25-30, and 35-40. These segments involved ambiguous in-
structions or edge cases. Gemini 1.5 Flash and DeepSeek-
Chat struggled more broadly, while Claude 3.5 Sonnet and
GPT-40 Mini showed localized weaknesses. The results
suggest that task complexity—not just architecture—was a
strong driver of failure.

Fail Count Heatmap (Humaneval Dataset)

Figure 6: Fail Count over Tasks for both Datasets

Figure 7 highlights task-specific performance pat-
terns. High-failure tasks such as humaneval_Taskl,
humaneval_Task47, and mbpp_Taskl appeared across
multiple models, revealing consistent difficulty. Conversely,
MASON succeeded more on simpler MBPP tasks like
mbpp_-Task26 and mbpp_Task29. These insights con-
firm that model stability is closely linked to both task com-
plexity and coordination demands.

Figure 7: Top Passed and Failed Tasks per Model

Pass Rate Trend and Task Progression

Pass rate trends revealed how system performance evolved
throughout the evaluation. As shown in Figure 8, MA-
SON configurations—especially Gemini 1.5 Flash on Hu-
manEval—exhibited early performance drops and struggled
to recover, indicating coordination challenges under com-
plex constraints. In contrast, single-agent setups like Claude
3.5 Sonnet and GPT-40 Mini maintained stable trajectories
with fewer dips. DeepSeek-Chat MASON showed gradual
recovery, suggesting adaptive coordination, while GPT-40

Mini MASON sustained high accuracy from the outset with
minor fluctuations.

Figure 8: Pass Rate Trend over Tasks per Task

Cumulative scores in Figure 9 show that Claude 3.5
Sonnet and GPT-40 Mini MASON closed initial gaps and
outperformed their single-agent counterparts in later tasks,
demonstrating effective long-term orchestration. DeepSeek-
Chat MASON lost early momentum, while Gemini 1.5 Flash
continued to underperform—highlighting persistent weak-
nesses in managing extended sequences.

Figure 9: Cumulative Score over Tasks

Performance Summary and Model Ranking

To consolidate performance across multiple dimen-
sions—accuracy, speed, and consistency—we analyzed
radar charts per dataset, as shown in Fig 10 comparing
MASON and single-agent setups. These visualizations
illustrate model behavior under different system designs and
task complexities, emphasizing the trade-offs in pursuing
multi-agent collaboration.

Table 8 and Table 9 show that MASON offered marginal
benefits in stability for Claude 3.5 Sonnet and GPT-40 Mini,
though execution time remained comparable. DeepSeek-
Chat gained accuracy under MASON in MBPP but saw min-
imal impact elsewhere. Gemini 1.5 Flash performed better as
a single agent, with MASON impairing both accuracy and
stability—particularly on complex HumanEval tasks. Here,
PR refers to Pass Rate, RT to Runtime, and SB to Stability,
helping summarize model performance differences across
setups.

Model Ranking Radar Chart - MAS - Humaneval
Norm Exec Ti — Claude

Model Ranking Radar Chart - Single - Humaneval
Norm Exec Time. — dlaude

Model Ranking Radar Chart - MAS - Mbpp
Norm Exec Time — Claude

Model Ranking Radar Chart - Single - Mbpp
Norm Exec Time — Claude
Deepseek

— Gemini
—— Openai

Norm Stab

Norm Top Task

Figure 10: MASON vs Single LLM Model Ranking

Model PR | RT | SB | MASON Benefit

Claude 3.5 Sonnet | Yes | No | Yes
DeepSeek-Chat Yes | No | Yes
Gemini 1.5 Flash No | No | No
GPT-40 Mini Yes | No | Yes

Stability

None
Stability

Stability, Accuracy

Table 8: HE — MASON vs Single-Agent Performance

Model PR | RT | SB | MASON Benefit
Claude 3.5 Sonnet | Yes | No | Yes | Balanced
DeepSeek-Chat Yes | No | Yes | Stability

Gemini 1.5 Flash No | No | No | None

GPT-40 Mini Yes | No | Yes | Balanced

Table 9: MBPP — MASON vs Single-Agent Performance

Model Strengths Weaknesses

Claude MASON and Single | Minor MASON

3.5 Sonnet | balanced and stable gains

DeepSeek- | Fastest execution, | similar accuracy;

Chat modest MASON | MASON did not
stability gain significantly help

Gemini Fast in single-agent | MASON worsened

1.5 Flash setup accuracy and stabil-

ity

GPT-40 Consistent, minor | Slightly slower exe-

Mini MASON edge in | cutionin MBPP
complex tasks

Table 10: Model Strength Summary

Evaluating Table 10 shows us that comparisons under-
score a recurring theme: MASON introduced slight stabil-
ity gains in some models but often at the cost of execution

speed, with Gemini 1.5 Flash particularly affected by MA-
SON overhead. Claude 3.5 Sonnet and GPT-40 Mini demon-
strated the most balanced performance, benefiting from MA-
SON only under specific conditions.

Conclusion

This study explored whether MASON using LLMs could
enhance NCD by distributing tasks among specialized
agents. Tested across several models and coding bench-
marks, MASON was compared against conventional single-
agent setups.

The results showed modest but consistent gains in sta-
bility and accuracy—most notably in simpler MBPP tasks.
Claude 3.5 Sonnet and GPT-40 Mini performed reliably
across both configurations, while DeepSeek-Chat benefited
from MASON on select workflows. However, MASON
came with a trade-off: increased execution time, and in the
case of Gemini 1.5 Flash, reduced performance due to coor-
dination overhead.

While MASON consistently outperformed single agents
in stability, it fell short of delivering the broader perfor-
mance gains initially expected. Key limitations stemmed
from hardware and design: all evaluations ran on a
CPU-only setup, restricting scale and forcing sequen-
tial execution. Open-source models—especially smaller
ones—struggled under MASON due to high memory re-
quirements and limited reasoning depth, making them un-
suitable for deployment in low-resource environments.

Beyond hardware, the architecture itself limited perfor-
mance. Shallow prompts and a rigid agent sequence likely
prevented the system from fully leveraging collaborative
reasoning. These challenges highlight the need for deeper
prompt engineering, adaptive agent flows, and smarter
orchestration—especially for complex, multi-step coding
tasks.

Still, MASON successfully demonstrated its core capabil-
ities: automated task delegation, agent interaction, and con-
sistent performance tracking. With refinement, and adapta-
tions for lightweight LLMs, this framework has real poten-
tial to support intelligent NCD—even in constrained envi-
ronments.

Future Scope

There is strong potential to evolve this study into a
production-ready tool. Future development should focus on
improving orchestration through advanced prompt chain-
ing, dynamic agent assignment, and deeper collaboration
strategies. Expanding benchmark coverage and incorporat-
ing more diverse models would yield broader insights.

While this version used a lightweight YAML-based setup
suitable for local use, scaling the system may benefit from
adopting more robust agentic platforms such as LangChain,
AutoGen, or a custom solution. A key goal is to replicate
the study using only open-source models, enabling detailed
architectural comparisons under resource constraints.

Future work should also explore MASON designs tailored
for small LLMs—reducing orchestration complexity, sim-
plifying task flows, or applying fine-tuning—to make agent-
based systems viable in low-resource environments.

References

AlOmar, E. A.; Venkatakrishnan, A.; Mkaouer, M. W.; New-
man, C.; and Ouni, A. 2024. How to refactor this code? An
exploratory study on developer-ChatGPT refactoring con-
versations. In Proceedings of the 21st International Con-
ference on Mining Software Repositories, 202-206.
ALSAADI H. A.; RADAIN, D. T.; ALZAHRANI, M. M,;
ALSHAMMARI, W. F.; ALAHMADI, D.; and FAKIEH, B.
2021. Factors that affect the utilization of low-code devel-
opment platforms: survey study. Romanian Journal of Infor-
mation Technology & Automatic Control/Revista Romdnd de
Informaticd si Automaticd, 31(3).

Aubry, M.; Meng, H.; Sugolov, A.; and Papyan, V. 2024.
Transformer Alignment in Large Language Models. arXiv
preprint arXiv:2407.07810.

Babhsi, E. M.; Ceyhan, E.; and Kosar, T. 2007. Conditional
workflow management: A survey and analysis. Scientific
Programming, 15(4): 283-297.

Balamurugan, A.; Shetty, H. A.; Sengunthar, K. M.; and
Gupta, M. 2023. Auditing Low-Code and No-Code Plat-
forms Securing Citizen Development. In Modernizing En-
terprise IT Audit Governance and Management Practices,
68-94. I1GI Global.

Bang, Y.; Cahyawijaya, S.; Lee, N.; Dai, W.; Su, D.; Wilie,
B.; Lovenia, H.; Ji, Z.; Yu, T.; Chung, W.; et al. 2023. A
multitask, multilingual, multimodal evaluation of chatgpt on
reasoning, hallucination, and interactivity. arXiv preprint
arXiv:2302.04023.

Barbarroxa, R.; Gomes, L.; and Vale, Z. 2024. Bench-
marking Large Language Models for Multi-agent Sys-
tems: A Comparative Analysis of AutoGen, CrewAl, and
TaskWeaver. In International Conference on Practical
Applications of Agents and Multi-Agent Systems, 39—48.
Springer.

Beranic, T.; Rek, P.; and Hericko, M. 2020. Adoption and
usability of low-code/no-code development tools. In Cen-
tral European Conference on Information and Intelligent
Systems, 97-103. Faculty of Organization and Informatics
Varazdin.

Bock, A.; and Frank, U. 2021. Low-Code Platform. Busi-
ness & Information Systems Engineering, 63 (6), 733-740.
Curty, S.; Hérer, F.; and Fill, H.-G. 2022. Blockchain ap-
plication development using model-driven engineering and
low-code platforms: A survey. In International Conference
on Business Process Modeling, Development and Support,
205-220. Springer.

Di Ruscio, D.; Kolovos, D.; de Lara, J.; Pierantonio, A.;
Tisi, M.; and Wimmer, M. 2022. Low-code development
and model-driven engineering: Two sides of the same coin?
Software and Systems Modeling, 21(2): 437-446.

Du, Y.; Li, S.; Torralba, A.; Tenenbaum, J. B.; and Mor-
datch, I. 2023. Improving factuality and reasoning in lan-
guage models through multiagent debate. arXiv preprint
arXiv:2305.14325.

Duan, Z.; and Wang, J. 2024. Exploration of LLM Multi-
Agent Application Implementation Based on LangGraph+
CrewAl. arXiv preprint arXiv:2411.18241.

Goonatilleke, S. T.; and Hettige, B. 2022. Past, Present and
Future Trends in Multi-Agent System Technology. Journal
Européen des Systemes Automatisés, 55(6).

He, J.; Treude, C.; and Lo, D. 2024. LLM-Based Multi-
Agent Systems for Software Engineering: Vision and the
Road Ahead. arXiv preprint arXiv:2404.04834.

Hong, S.; Zheng, X.; Chen, J.; Cheng, Y.; Wang, J.; Zhang,
C.; Wang, Z.; Yau, S. K. S.; Lin, Z.; Zhou, L.; et al. 2023.
Metagpt: Meta programming for multi-agent collaborative
framework. arXiv preprint arXiv:2308.00352.

Ishibashi, Y.; and Nishimura, Y. 2024. Self-organized
agents: A llm multi-agent framework toward ultra large-
scale code generation and optimization. arXiv preprint
arXiv:2404.02183.

Karamthulla, M. J.; Malaiyappan, J. N. A.; and Tillu, R.
2023. Optimizing Resource Allocation in Cloud Infrastruc-
ture through Al Automation: A Comparative Study. Jour-
nal of Knowledge Learning and Science Technology ISSN:
2959-6386 (online), 2(2): 315-326.

Li, H.; Jiang, H.; Zhang, T.; Yu, Z.; Yin, A.; Cheng, H.; Fu,
S.; Zhang, Y.; and He, W. 2023. TrainerAgent: Customizable
and Efficient Model Training through LLM-Powered Multi-
Agent System. arXiv preprint arXiv:2311.06622.

Liang, T.; He, Z.; Jiao, W.; Wang, X.; Wang, Y.; Wang, R;
Yang, Y.; Tu, Z.; and Shi, S. 2023a. Encouraging divergent
thinking in large language models through multi-agent de-
bate. arXiv preprint arXiv:2305.19118.

Liang, X.; Song, S.; Niu, S.; Li, Z.; Xiong, F.; Tang, B;
Wang, Y.; He, D.; Cheng, P; Wang, Z.; et al. 2023b.
Uhgeval: Benchmarking the hallucination of chinese large
language models via unconstrained generation. arXiv
preprint arXiv:2311.15296.

Lin, F.; Kim, D. J.; et al. 2024. When lIm-based code genera-
tion meets the software development process. arXiv preprint
arXiv:2403.15852.

Liu, L.; Yang, X.; Shen, Y.; Hu, B.; Zhang, Z.; Gu, J.; and
Zhang, G. 2023a. Think-in-memory: Recalling and post-
thinking enable llms with long-term memory. arXiv preprint
arXiv:2311.08719.

Liu, P; Yuan, W,; Fu, J.; Jiang, Z.; Hayashi, H.; and Neubig,
G. 2023b. Pre-train, prompt, and predict: A systematic sur-
vey of prompting methods in natural language processing.
ACM Computing Surveys, 55(9): 1-35.

Liu, Z.; Yao, W.; Zhang, J.; Yang, L.; Liu, Z.; Tan, J;
Choubey, P. K.; Lan, T.; Wu, J.; Wang, H.; et al. 2024.
AgentLite: A Lightweight Library for Building and Ad-
vancing Task-Oriented LLM Agent System. arXiv preprint
arXiv:2402.15538.

Logeshwaran, J.; Kiruthiga, T.; Kannadasan, R.; Vijayaraja,
L.; Alqahtani, A.; Alqahtani, N.; and Alsulami, A. A. 2023.
Smart load-based resource optimization model to enhance
the performance of device-to-device communication in 5G-
WPAN. Electronics, 12(8): 1821.

Luo, Y.; Liang, P.; Wang, C.; Shahin, M.; and Zhan, J. 2021.
Characteristics and challenges of low-code development:
the practitioners’ perspective. In Proceedings of the 15th

ACM/IEEE international symposium on empirical software
engineering and measurement (ESEM), 1-11.

Ma, C.; Zhang, J.; Zhu, Z.; Yang, C.; Yang, Y.; Jin, Y.; Lan,
Z.; Kong, L.; and He, J. 2024a. AgentBoard: An Analytical
Evaluation Board of Multi-turn LLM Agents. arXiv preprint
arXiv:2401.13178.

Ma, L.; Yang, W.; Xu, B.; Jiang, S.; Fei, B.; Liang, J.; Zhou,
M.; and Xiao, Y. 2024b. Knowlog: Knowledge enhanced
pre-trained language model for log understanding. In Pro-
ceedings of the 46th IEEE/ACM International Conference
on Software Engineering, 1-13.

Ma, Z.; Chen, A. R.; Kim, D. J.; Chen, T.-H.; and Wang,
S. 2024c. Llmparser: An exploratory study on using large
language models for log parsing. In Proceedings of the
IEEE/ACM 46th International Conference on Software En-
gineering, 1-13.

Martinez, E.; and Pfister, L. 2023. Benefits and limitations
of using low-code development to support digitalization in
the construction industry. Automation in Construction, 152:
1049009.

Miret, S.; and Krishnan, N. 2024.
for Real-World Materials Discovery?
arXiv:2402.05200.

Peng, J.; Wu, M.; Zhang, X.; Xie, Y.; Jiang, F.; and Liu, Y.
2006. A collaborative Multi-Agent model with knowledge-
based communication for the RoboCupRescue simulation.
In International Symposium on Collaborative Technologies
and Systems (CTS’06), 341-348. IEEE.

Perez, J.; Léger, C.; Ovando-Tellez, M.; Foulon, C.; Dus-
sauld, J.; Oudeyer, P.-Y.; and Moulin-Frier, C. 2024. Cul-
tural evolution in populations of Large Language Models.
arXiv preprint arXiv:2403.08882.

Pinho, D.; Aguiar, A.; and Amaral, V. 2023. What about
the usability in low-code platforms? A systematic literature
review. Journal of Computer Languages, 74: 101185.
Rasheed, Z.; Sami, M. A.; Kemell, K.-K.; Waseem, M.;
Saari, M.; Systd, K.; and Abrahamsson, P. 2024. Code-
Pori: Large-Scale System for Autonomous Software De-
velopment Using Multi-Agent Technology. arXiv preprint
arXiv:2402.01411.

Sahay, A.; Indamutsa, A.; Di Ruscio, D.; and Pierantonio,
A. 2020. Supporting the understanding and comparison of
low-code development platforms. In 2020 46th Euromicro
Conference on Software Engineering and Advanced Appli-
cations (SEAA), 171-178. IEEE.

Sarumi, O. A.; and Heider, D. 2024. Large language models
and their applications in bioinformatics. Computational and
Structural Biotechnology Journal.

Schifer, M.; Nadi, S.; Eghbali, A.; and Tip, F. 2023. An
empirical evaluation of using large language models for au-
tomated unit test generation. IEEE Transactions on Software
Engineering.

Shabir, A.; Ahmed, K. T.; Kanwal, K.; Almas, A.; Raza,
S.; Fatima, M.; and Abbas, T. 2024. A Systematic Re-
view of Attention Models in Natural Language Processing.
STATISTICS, COMPUTING AND INTERDISCIPLINARY
RESEARCH, 6(1): 33-56.

Are LLMs Ready
arXiv preprint

Shen, C.; Yang, W.; Pan, M.; and Zhou, Y. 2023. Git Merge
Conflict Resolution Leveraging Strategy Classification and
LLM. In 2023 IEEE 23rd International Conference on
Software Quality, Reliability, and Security (QRS), 228-239.
IEEE.

Shen, W.; Li, C.; Chen, H.; Yan, M.; Quan, X.; Chen,
H.; Zhang, J.; and Huang, F. 2024. Small llms are
weak tool learners: A multi-llm agent. arXiv preprint
arXiv:2401.07324.

Solanky, J.; Patil, K.; and Patel, G. 2016. Resemblance
of PhoneGap and Titanium for Mobile Application Devel-
opment. International Journal of Computer Applications,
144(10).

Sufi, F. 2023. Algorithms in low-code-no-code for research
applications: a practical review. Algorithms, 16(2): 108.

Talebirad, Y.; and Nadiri, A. 2023. Multi-agent collabora-
tion: Harnessing the power of intelligent 1lm agents. arXiv
preprint arXiv:2306.03314.

Topsakal, O.; and Akinci, T. C. 2023. Creating large lan-
guage model applications utilizing langchain: A primer on
developing llm apps fast. In International Conference on
Applied Engineering and Natural Sciences, volume 1, 1050—
1056.

Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Roziere, B.; Goyal, N.; Hambro, E.;
Azhar, F; et al. 2023. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971.
Wang, Z.; Chu, Z.; Doan, T. V.; Ni, S.; Yang, M.; and Zhang,
W. 2024. History, development, and principles of large lan-
guage models: an introductory survey. Al and Ethics, 1-17.
Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Li, B.; Zhu, E.; Jiang,
L.; Zhang, X.; Zhang, S.; Liu, J.; et al. 2023. Autogen: En-
abling next-gen 1lm applications via multi-agent conversa-
tion. arXiv preprint arXiv:2308.08155.

Xie, Z.; Chen, Y.; Zhi, C.; Deng, S.; and Yin, J. 2023.
ChatUniTest: a ChatGPT-based automated unit test gener-
ation tool. arXiv preprint arXiv:2305.04764.

Yan, Z. 2021. The impacts of low/no-code development
on digital transformation and software development. arXiv
preprint arXiv:2112.14073.

Yang, C.; Liu, J.; Xu, B.; Treude, C.; Lyu, Y.; Li, M,;
and Lo, D. 2023. APIDocBooster: An Extract-Then-
Abstract Framework Leveraging Large Language Mod-
els for Augmenting API Documentation. arXiv preprint
arXiv:2312.10934.

Yuan, Z.; Lou, Y.; Liu, M.; Ding, S.; Wang, K.; Chen, Y;
and Peng, X. 2023. No more manual tests? evaluating and
improving chatgpt for unit test generation. arXiv preprint
arXiv:2305.04207.

Zhang, Y.; Li, Y.; Cui, L.; Cai, D.; Liu, L.; Fu, T.; Huang,
X.; Zhao, E.; Zhang, Y.; Chen, Y; et al. 2023. Siren’s song
in the Al ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

