
Employing Computer Vision on a Smartphone to
Help the Visually Impaired Cross the Road

Muhammad Imaad M. Ismail, Mahmoud A. A. Mousa
Heriot-Watt University

School of Mathematical and Computer Sciences
mm2027@hw.ac.uk, m.mousa@hw.ac.uk

Abstract

This paper presents a smartphone-based hybrid computer vi-
sion system designed to assist visually impaired (VI) indi-
viduals in safely navigating pedestrian crosswalks. Existing
assistive technologies often depend on controlled crossings
and require external hardware, limiting their usability in di-
verse real-world scenarios. In contrast, this system leverages
a standard smartphone camera to detect vehicles and recog-
nize pedestrian traffic lights in real time. The proposed frame-
work integrates two lightweight YOLOv11 models—one for
vehicle detection and another for pedestrian traffic light clas-
sification—alongside MiDaS v2.1 for monocular depth esti-
mation. These models were trained on public datasets (KITTI
and blind-assist1), optimized using TensorFlow Lite, and de-
ployed as two Android applications providing auditory feed-
back for real-time guidance. Performance evaluations demon-
strate high accuracy in object detection and reliable depth
estimation under various conditions. Usability testing fur-
ther confirms the practicality of the system in live environ-
ments. By combining accessibility, mobility, and context-
aware scene understanding, this work offers a low-cost, de-
ployable alternative for improving independent mobility in
the VI community.

Introduction
Computer Vision (CV) techniques have enabled smart-
phones to understand dynamic environments in real
time, supporting applications such as autonomous driv-
ing, robotics, and assistive navigation. The proliferation of
lightweight deep learning (DL) models, combined with op-
timized mobile inference engines like TensorFlow Lite, has
made real-time vision feasible on low-power devices (Igna-
tov et al. 2019; Wang, Cui, and Lai 2019).

This capability is particularly transformative in assistive
technologies for visually impaired (VI) individuals, where
scene awareness, traffic understanding, and obstacle avoid-
ance must be performed in real-time under hardware con-
straints (Vijetha and Geetha 2024; Vrysis et al. 2024). Tradi-
tional assistive systems often rely on cloud processing, wear-
able sensors, or infrastructure-based crossings, which can be
costly, less portable, or unreliable in uncontrolled environ-
ments (Khan et al. 2020; Li et al. 2020).

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In contrast, we propose a smartphone-only system for safe
road crossing that integrates two real-time DL pipelines:
a vehicle detection and depth estimation app for uncon-
trolled crossings, and a pedestrian light recognition app for
controlled crossings. Our approach uses YOLOv11 for ob-
ject detection (Khanam and Hussain 2024), MiDaS v2.1 for
monocular depth estimation (Sarızeybek and Isık 2022), and
is fully optimized for on-device inference. Both apps include
audio feedback using Android’s TTS engine, issuing verbal
cues like “safe to cross” or “car approaching”.

Unlike other systems that require extra hardware (e.g., Li-
DAR, GPS, stereo cameras), our method leverages only the
monocular rear camera of a smartphone, improving portabil-
ity and accessibility. Evaluations across benchmarks such as
KITTI (Geiger et al. 2013) and blind-assist1 (X 2024) show
our system achieves comparable precision to recent state-of-
the-art works, while maintaining real-time performance on
mid-tier Android devices.

The contributions of this paper are as follows:
• A hybrid Android-based vision system to support both

controlled and uncontrolled pedestrian crossings.
• Integration of YOLOv11 and MiDaS models for com-

bined object detection and depth estimation in real-time.
• Modular dual-app structure optimized for low inference

latency using TensorFlow Lite.
• Comprehensive evaluation on datasets and real-world

testing for usability and responsiveness.

Related Work
Recent advances in DL compression, on-device inference,
and monocular perception have enabled complex CV sys-
tems to operate on smartphones. This section discusses the
core components relevant to the proposed system: real-time
DL on mobile devices, monocular depth estimation, object
detection and tracking, and hybrid assistive tools for the VI.

Deep Learning on Mobile Devices
Running DL models on smartphones is constrained by ther-
mal limits, power budgets, and memory capacity. Frame-
works such as TensorFlow Lite have enabled real-time in-
ference on Android by supporting quantization and opera-
tor fusion (Tang 2018; Ignatov et al. 2019). Several stud-
ies benchmark DL performance across mobile CPUs and



GPUs, showing that lightweight models like MobileNet and
YOLOv5 can run efficiently even on mid-range devices (Ig-
natov et al. 2019).

Cai et al. developed YOLObile, a compression-optimized
YOLOv4 variant for smartphones, achieving a 14× reduc-
tion in size with minor accuracy tradeoffs. Furthermore,
Wang, Cui, and Lai highlighted the challenges and best prac-
tices for integrating DL in mobile edge environments.

Monocular Depth Estimation (MDE)
MDE aims to infer spatial depth using a single RGB im-
age. Traditional methods like Inverse Perspective Mapping
(IPM) required prior knowledge of scene geometry and cal-
ibration (Bao and Wang 2016), which limits robustness.
DL-based approaches generalize better by learning pixel-to-
depth mappings from large-scale datasets.

MiDaS (Ranftl et al. 2022) is one of the most gener-
alizable models for MDE, trained across diverse datasets
like KITTI, NYU Depth, and MegaDepth. It captures
multi-scale spatial features through a Transformer-based
encoder-decoder architecture. Researchers successfully de-
ployed MiDaS v2.1 on Android devices, reporting ac-
ceptable inference times and strong structural consis-
tency—further validating its suitability for mobile assistive
systems (Sarızeybek and Isık 2022). External benchmarking
studies demonstrate that MiDaS achieves superior structural
consistency and edge sharpness compared to DenseDepth
in edge-device environments (Padkan et al. 2023). Object-
specific distance estimation has been explored in monocular
setups (Zhu and Fang 2019), but often requires depth post-
processing unsuitable for mobile inference.

Monocular Object Detection and Tracking
Real-time object detection on mobile platforms typically
uses one-stage detectors like YOLO due to their low latency.
YOLOv11 (Khanam and Hussain 2024) introduces architec-
tural improvements such as lightweight spatial attention and
enhanced residual connections to improve detection accu-
racy while reducing computational load.

Object tracking is frequently achieved using DeepSORT,
which combines Kalman filtering and CNN-based appear-
ance features. YOLOv4 combined with DeepSORT has been
used for real-time vehicle tracking (Zuraimi and Zaman
2021). Similarly, YOLOX with DeepSORT has been em-
ployed to estimate vehicle speed and position with high ac-
curacy on monocular streams (Zhang et al. 2024).

Hybrid Assistive Systems
Hybrid systems that combine object detection with depth es-
timation are emerging as powerful tools for navigation as-
sistance. Obs-tackle (Vijetha and Geetha 2024) uses MiDaS
and semantic segmentation to evaluate obstacle proximity.
It also integrates TopFormer for lane boundary recognition
and provides audio feedback. However, it is implemented
on high-end smartphones with 8GB RAM and lacks mod-
ular design, which can lead to overheating when multiple
models run simultaneously.

A wearable navigation system combining a monocular
camera, GPS, and ultrasonic sensors has been implemented

for outdoor localization (Khan et al. 2020). Though it is ef-
fective in that general context, it does not support traffic sig-
nal recognition or vehicle motion estimation.

CrossSafe (Li et al. 2020) targets pedestrian signal recog-
nition for the visually impaired using a CNN, but it lacks
support for uncontrolled crossings. Meanwhile, LytNet, a
pedestrian signal classifier with over 96% accuracy, was
proposed and optimized for iOS, though it depends on a
pre-trained MobileNet, and its restriction to iOS devices re-
stricts its use to a specific demographic (Yu, Lee, and Kim
2019). A CNN-based system for blind navigation was pre-
sented, achieving strong accuracy using obstacle-aware seg-
mentation, though their model was not designed for mobile
deployment (Atitallah et al. 2024). Another vision-based
system was implemented that detects multiple scene types
for the visually impaired, though it does not perform fine-
grained traffic context recognition (Divina, Richard, and
Raimond 2023). These solutions address important aspects
of visual navigation but are either specialized, platform-
dependent, or insufficiently generalized to handle complex
crossing scenarios.

Assistive Vision Systems for the Visually Impaired
Obs-tackle (Vijetha and Geetha 2024) is a hybrid system
combining segmentation and depth estimation for obstacle
detection using MiDaS and TopFormer. It provides safe path
suggestions to VI users but is computationally intensive for
real-time use on phones. Another Android-based navigation
aid was proposed that used SSD-MobileNet and GPS but
lacked support for dynamic vehicle tracking (Khan et al.
2020). CrossSafe (Li et al. 2020) employed a CNN to de-
tect pedestrian lights and provide haptic feedback using Jet-
son TX2 hardware. LytNet (Yu, Lee, and Kim 2019), a
lightweight pedestrian signal detector that achieves 96% ac-
curacy on iOS. Unlike our system, these methods are either
dependent on external hardware or lack vehicle motion es-
timation. Another notable system was proposed which in-
tegrates YOLOv4-based object detection, pedestrian traf-
fic light recognition, and distance estimation into a head-
mounted mobile assistive device (Tian et al. 2021). While
their approach achieved high accuracy across scene compo-
nents, including crosswalk boundaries, pedestrians, and traf-
fic signals, it was primarily tailored to controlled crossings
and required dedicated hardware such as the Intel RealSense
camera, making it less accessible than a smartphone-only so-
lution. Our proposed system, by contrast, supports both con-
trolled and uncontrolled scenarios using only a smartphone
camera, offering a more accessible solution for VI users.

Critical Analysis and Research Gaps
Most current systems focus exclusively on controlled cross-
ings, using traffic light cues without supporting unregulated
environments. Others depend on additional hardware such as
compute modules or headsets, limiting accessibility. More-
over, few combine traffic light recognition, vehicle detec-
tion, and depth estimation into a unified mobile pipeline.

Moreover, current solutions often lack modularity or re-
quire persistent network access, limiting their deployment
in real-world urban settings. Few systems attempt to fuse



traffic light classification with depth-aware object detection
on mobile devices in a fully offline pipeline.

This work addresses these gaps by proposing a
lightweight, dual-app smartphone system integrating all
three functionalities. It operates entirely on-device and of-
fers audio-based scene feedback tailored for VI pedestrians
in both controlled and uncontrolled settings.

Proposed Framework
The proposed system consists of two Android applications
that operate independently to assist VI users in crossing
roads safely. One application handles vehicle detection and
depth estimation, while the other is responsible for pedes-
trian traffic light classification. This dual-app architecture
was chosen due to mobile hardware limitations and to pre-
vent overloading from running multiple heavy models si-
multaneously.

Application Structure and Architecture
The applications were implemented using Android Studio
and Kotlin, utilizing the CameraX API for real-time frame
capture. Frame analysis and overlay rendering were han-
dled asynchronously to maintain throughput, and bounding
boxes were drawn using a custom OverlayView. Safety
logic was encapsulated in modular Activity.kt classes
for maintainability. The full system was initially designed as
a single app; however, due to issues such as segmentation
faults, overheating, and reduced responsiveness, it was split
into two separate applications optimized for performance.
The user can seamlessly switch between these via Google
Assistant commands.

Vehicle Detection and Depth Estimation App. As illus-
trated in Figure 1, this application includes three main mod-
ules:

• A YOLOv11-based object detector trained to identify ve-
hicles such as cars, vans, trucks, and trams.

• A MiDaS v2.1 Small model for monocular depth esti-
mation, providing pixel-wise depth information from a
single 256x256 image. MiDaS was selected not only for
its competitive accuracy but also for its superior perfor-
mance in maintaining edge sharpness in Android deploy-
ment, which is critical to distinguish vehicles from urban
backgrounds where clear object boundaries aid in safer
decision-making.

• A Text-to-Speech (TTS) feedback system that generates
safety alerts based on proximity and motion analysis.

Real-time camera frames are analyzed via
FrameAnalyser.kt, and asynchronous coroutines are
used to maximize throughput. Detected objects are tracked
across frames using a lightweight tracker (Tracker.kt)
which helps smooth out noise in depth data. A rule-based
engine embedded in DepthEstimationActivity.kt
determines crossing safety based on object position and
movement trends, issuing verbal commands such as “Don’t
cross, car is approaching fast” or “Safe to cross, car is far
and stable”. This module builds on the open-source Android
implementation by haruncetin, which served as the base for

Figure 1: Structure of the vehicle detection with depth esti-
mation application.

integrating MiDaS depth inference into a real-time Android
environment. The original framework was extended and
restructured to support dynamic bounding box evaluation,
audio feedback, and frame analysis tailored for pedestrian
crossing safety.

Pedestrian Light Detection App
The second application, shown in Figure 2, is a streamlined
tool focused on detecting and classifying pedestrian traffic
lights using YOLOv11 Nano. It includes:

• Camera feed capture and preprocessing using the Cam-
eraX API.

• Inference using a TFLite model trained
on the blind-assist1 dataset with
classes: red-pedestrian-light,
green-pedestrian-light, and
traffic-light.

• Confidence filtering, non-max suppression, and Over-
layView rendering for bounding boxes and class labels.

• Audio feedback using Android’s TTS API, updated every
few seconds to avoid information overload.

Both models were trained with data augmentation tech-
niques (e.g., mosaic, flips, color jittering) and optimized us-
ing AMP for faster training. This model structure achieved
high classification accuracy, particularly for red and green
pedestrian light classes. In the pedestrian light application,



Figure 2: Structure of the pedestrian traffic light detection
application.

the detection pipeline follows a standard object classifi-
cation flow: the TFLite interpreter processes each camera
frame to identify and classify bounding boxes. The output
is filtered using confidence thresholds and non-maximum
suppression to isolate the most prominent signal. Only
detections labeled as green-pedestrian-light or
red-pedestrian-light are used to drive feedback.
Based on the active class and detection confidence, the sys-
tem issues a verbal prompt advising the user to either cross
or wait. This logic was implemented natively in Kotlin us-
ing Android’s Text-to-Speech API and timer constraints to
avoid repeated prompts.

Decision Logic and Feedback Flow
Each application independently determines whether it is safe
to cross based on different input cues. The vehicle detection
app uses object depth category (Near, Close, Far) and move-
ment patterns, while the pedestrian light app uses the clas-
sification result. Together, they offer a full understanding of
both controlled and uncontrolled crossings.

All outputs are relayed to the user via voice feedback.
Audio is only triggered if the safety status has changed,
to avoid cognitive overload. Constants such as thresholds,
model paths, and voice update intervals are defined cen-
trally in Constants.kt. The core logic that governs real-
time safety feedback in the vehicle detection app is out-
lined in Figure 3. It illustrates how YOLOv11 detections
and MiDaS-generated depth values are processed together

to trigger appropriate audio warnings based on object dis-
tance and motion trends.

1 # Pseudocode: Depth-Aware Vehicle
Detection and Safety Assessment

2
3 load YOLOv11 model
4 load MiDaS depth estimation model
5 initialize camera feed
6
7 while camera_is_active:
8 frame = capture_camera_frame()
9 depth_map = depth_model.

getDepthMap(frame)
10 boxes = detector.detect(frame)
11
12 for box in boxes:
13 box.depth = getDepthAtBox(box,

depth_map)
14 if box.depth < 10:
15 category = "Near"
16 elif box.depth < 30:
17 category = "Close"
18 else:
19 category = "Far"
20
21 if category == "Near" and

object_moving_towards(box):
22 speak("Don’t cross, fast-

approaching car")
23 elif category == "Far" and

has_been_far_for_long(box):
24 speak("Safe to cross")

Figure 3: Simplified pseudocode for YOLOv11 and
MiDaS-based vehicle detection with real-time audio
feedback.

Experiments
This section presents the evaluation of the proposed system
through both model performance metrics and user testing.
We report results for the YOLOv11-based vehicle and traf-
fic light detection models, and summarize feedback from VI
participants who tested the system.

Dataset Splits
Two datasets were used to train and evaluate the proposed
system: the KITTI dataset for vehicle detection and the
blind assist1 dataset for pedestrian traffic light detec-
tion.

Vehicle Detection (KITTI): From the full 7,481 train-
ing images provided by the KITTI object detection bench-
mark (Geiger et al. 2013), we used 7,001 images for train-
ing and 480 for validation. A separate set of 7,518 images
was used for testing, consistent with standard practices in
the literature.

Pedestrian Light Classification (blind assist1): The
dataset originally included 622 red, 561 green, and 568 gen-
eral traffic light instances, but only the first two were re-
tained due to low classification performance of the third
class during validation. The dataset was split into 79% for



training, 16% for validation, and 5% for testing. These splits
ensured balanced representation of red and green pedestrian
lights, which are critical to safe crossing decisions (X 2024).

Training Configuration

Pedestrian Light Model (YOLOv11 Nano):

• Optimizer: AdamW, Learning Rate: 0.001429, Momen-
tum: 0.9, Weight Decay: 0.0005

• Epochs: 80 with early stopping after 10 non-improving
epochs (best at epoch 64)

• Input Resolution: 640×640

• Augmentations: Mosaic, horizontal flip, and color jitter-
ing

• AMP (Automatic Mixed Precision): Enabled for faster
training

Vehicle Detection Model (YOLOv11 Nano):

• Optimizer: AdamW, Learning Rate: 0.00125

• Epochs: 50

• Image Resizing: 1242×375 → 640×640

• Augmentations: 50% horizontal flip, full mosaic aug-
mentation

• AMP: Enabled

Training was performed using the Ultralytics YOLOv11
training pipeline (Jocher, Qiu, and Chaurasia 2023), moni-
tored using mAP and loss metrics across training and vali-
dation splits.

Evaluation Metrics

System performance was evaluated using precision, recall,
F1-score, and mean Average Precision (mAP) at IoU thresh-
olds of 0.5 and 0.5:0.95.

Precision:

Precision =
TP

TP + FP

Recall:

Recall =
TP

TP + FN

F1-Score:

F1Score =
2 · Precision ·Recall

Precision+Recall

Mean Average Precision (mAP): Area under the precision-
recall curve averaged across all classes and IoU thresholds.

Performance was also monitored using classification loss,
objectness loss, and Distribution Focal Loss (DFL) across
training epochs. No overfitting was observed, and all valida-
tion metrics improved steadily.

Figure 4: Confusion matrix for YOLOv11 vehicle detection.

Figure 5: Precision-recall curve for YOLOv11 vehicle de-
tection.

Vehicle Detection Performance
The YOLOv11 model for vehicle detection was evaluated
using the KITTI dataset and a custom annotated set. The
normalized confusion matrix in Figure 4 indicates high pre-
cision across all classes, with the Truck and Tram classes
achieving perfect classification rates.

Figure 5 shows the precision-recall (PR) curve. The
model achieves a mean average precision (mAP@0.5) of
0.963, demonstrating strong generalization performance un-
der real-world conditions.

On an Android 11 device equipped with a Qualcomm
SDM765G 5G OCTA-core processor, the vehicle detection
model achieved an average inference time of approximately
315 milliseconds per frame. Although not strictly real-time,
this was sufficient for pedestrian-level response time in ur-
ban navigation scenarios.

Pedestrian Traffic Light Detection Performance
The pedestrian light model, also based on YOLOv11, was
trained on the blind-assist1 dataset. Figure 6 illus-
trates the confusion matrix, with 98% accuracy for red lights



and 96% for green lights. The traffic-light class
showed lower performance and was excluded from final in-
ference logic.

Figure 6: Confusion matrix for YOLOv11 pedestrian traffic
light detection.

As shown in Figure 7, the model achieves an mAP@0.5 of
0.873 and strong recall at lower confidence thresholds, sup-
porting robust operation under varied lighting conditions.

Figure 7: Precision-recall curve for pedestrian traffic light
detection.

The pedestrian light detection model demonstrated a sim-
ilar average inference time of 305 milliseconds per frame
on the same hardware. Despite the heavier load, the appli-
cation maintained responsiveness suitable for assistive feed-
back, given the slower pace and timing of pedestrian light
changes. Although the average inference time of 305–315ms
per frame is below the typical 30 FPS benchmark for real-
time video, this latency is acceptable for pedestrian navi-
gation tasks where user movement is relatively slow, and
feedback intervals of under one second remain effective and
non-disruptive. Similar latency tolerance has been reported
in other VI navigation systems that prioritize safe and clear
verbal feedback over frame rate (Vijetha and Geetha 2024).

Usability Testing

To evaluate real-world utility, a small-scale usability study
was conducted with VI participants. They rated both appli-
cations across clarity, responsiveness, and perceived useful-
ness. Results in Figure 8 show that audio guidance was rated
highly, with an average score of 4.4/5.

Figure 8: Helpfulness of audio feedback as rated by users.

When asked about the system’s potential in real-world
scenarios, 87% of participants responded positively (Fig-
ure 9), citing increased confidence and perceived safety as
key benefits. A small portion indicated that the applications
could be helpful with significant improvements.

Figure 9: Perceived real-world usefulness of the system.

Participants were also asked about the overall ease of use
for each application and the responsiveness of the system.
As shown in Figure 10, the majority of users found both
apps intuitive and easy to navigate.

Figure 10: User rating of application ease of use.

Additionally, Figure 11 illustrates that response times
were perceived as adequate for real-time crossing assistance,
with most participants rating them as satisfactory or better.



Figure 11: User perception of application responsiveness.

Limitations
Despite promising results, the system has several limita-
tions. Firstly, the average inference speed of approximately
300 milliseconds could be enhanced to perform faster for
rapidly changing environments, potentially delaying criti-
cal safety cues. Secondly, the depth estimation module re-
lies on relative depth rather than metric absolute values,
which could introduce uncertainty in distance estimation in
complex scenes with multiple occlusions or varied eleva-
tion. Thirdly, while the use of two separate Android ap-
plications improves performance and reduces memory is-
sues on mobile devices, it introduces complexity. Users
must manually switch between apps depending on the cross-
ing type (controlled vs. uncontrolled), which could be cog-
nitively demanding in real-world scenarios. In high-stress
or time-sensitive situations, this manual context-switching
could lead to incorrect app usage or decision delays, increas-
ing the likelihood of unsafe crossing attempts. Automating
this process is vital for the future development of the system.
Additionally, although initial user feedback was positive, the
usability evaluation was limited to a small sample of partic-
ipants of 15 users. Testing was conducted under relatively
stable and clear weather conditions. Environmental factors
such as poor lighting, rain, occlusion or extremely crowded
roads may degrade model accuracy and lead to confusion.
These challenging conditions may not only reduce detection
accuracy but also delay critical safety alerts, posing a risk
in fast-moving or unpredictable traffic scenarios. Therefore,
broader and more diverse testing strategies including low-
light, rainy, or high-traffic scenarios is required to recon-
firm the robustness and generalization of the system. Lastly,
while the system integrates several state-of-the-art models
effectively for real-time pedestrian assistance, it does not in-
troduce new architectures or novel learning paradigms. The
primary contribution lies in thoughtful integration, deploy-
ment, and real-world evaluation of existing methods within
a smartphone framework. Future work will focus on merg-
ing both applications into a unified system with adaptive
mode switching, improving inference speed, and expanding
usability trials to include diverse environmental conditions
and user populations.

Conclusion
This paper presented a smartphone-based hybrid computer
vision system designed to assist VI individuals in cross-
ing roads safely in both controlled and uncontrolled envi-
ronments. The system integrates two lightweight YOLOv11
models for vehicle and pedestrian traffic light detection,

along with the MiDaS v2.1 depth estimation network, all
optimized for on-device inference using TensorFlow Lite.

By deploying the models across two Android applica-
tions, the framework addresses key challenges of mobile
computation, including thermal throttling and memory con-
straints. Usability testing with VI users confirmed the sys-
tem’s accessibility and real-world viability, while experi-
mental evaluation demonstrated high classification accuracy,
effective depth-based reasoning, and reliable audio feedback
delivery. This work serves as a successful proof of concept,
demonstrating that a fully functional pedestrian assistance
tool can be deployed using only a smartphone’s onboard
camera and processing capabilities.

Inference performance on mid-range hardware (Qual-
comm SDM765G, Android 11) yielded 305–315ms per
frame per model. Although not real-time by traditional
benchmarks, the response time proved sufficient for pedes-
trian navigation scenarios. While MiDaS provides highly
structured depth maps, its output is in relative units, which
can limit metric accuracy without calibration. While this is
an acceptable trade-off for VI feedback, it is important to
improve on this aspect in future versions.

The work also demonstrates that existing deep learning
architectures, when adapted carefully, can support real-time
assistive technologies on widely available smartphones. Fu-
ture work will focus on performance optimization through
model quantization and multi-threaded execution, as well
as incorporating additional context such as auditory scene
analysis or semantic segmentation for more comprehensive
safety cues.

References
Atitallah, A. B.; Said, Y.; Atitallah, M. A. B.; Albekairi, M.;
Kaaniche, K.; and Boubaker, S. 2024. An effective obstacle
detection system using deep learning advantages to aid blind
and visually impaired navigation. Ain Shams Engineering
Journal, 15(2): 102387.
Bao, D.; and Wang, P. 2016. Vehicle distance detection
based on monocular vision. In 2016 International Confer-
ence on Progress in Informatics and Computing (PIC), 187–
191. IEEE.
Cai, Y.; Li, H.; Yuan, G.; Niu, W.; Li, Y.; Tang, X.; Ren,
B.; and Wang, Y. 2021. Yolobile: Real-time object detection
on mobile devices via compression-compilation co-design.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, 955–963.
Divina, T.; Richard, R. P.; and Raimond, K. 2023. Assistance
for Visually Impaired People in Identifying Multiple Scenes
Using Deep Learning. In International Conference on Data
Intelligence and Cognitive Informatics, 547–556. Springer.
Geiger, A.; Lenz, P.; Stiller, C.; and Urtasun, R. 2013. Vision
meets robotics: The kitti dataset. The International Journal
of Robotics Research, 32(11): 1231–1237.
haruncetin. 2022. GitHub - haruncetin/MonocularDepthEs-
timation: In this repository, monocular depth estimation is
implemented using MiDaS v2.1 small model for Android
mobile devices.



Ignatov, A.; Timofte, R.; Kulik, A.; Yang, S.; Wang, K.;
Baum, F.; Wu, M.; Xu, L.; and Van Gool, L. 2019. Ai bench-
mark: All about deep learning on smartphones in 2019. In
2019 IEEE. In CVF International Conference on Computer
Vision Workshop (ICCVW), 3617–3635.
Jocher, G.; Qiu, J.; and Chaurasia, A. 2023. Ultralytics
YOLO.
Khan, M. A.; Paul, P.; Rashid, M.; Hossain, M.; and Ahad,
M. A. R. 2020. An AI-based visual aid with integrated read-
ing assistant for the completely blind. IEEE Transactions on
Human-Machine Systems, 50(6): 507–517.
Khanam, R.; and Hussain, M. 2024. YOLOv11: An
Overview of the Key Architectural Enhancements. arXiv
preprint arXiv:2410.17725.
Li, X.; Cui, H.; Rizzo, J.-R.; Wong, E.; and Fang, Y. 2020.
Cross-Safe: A computer vision-based approach to make all
intersection-related pedestrian signals accessible for the vi-
sually impaired. In Advances in Computer Vision: Proceed-
ings of the 2019 Computer Vision Conference (CVC), Vol-
ume 2 1, 132–146. Springer.
Padkan, N.; Trybala, P.; Battisti, R.; Remondino, F.; and
Bergeret, C. 2023. EVALUATING MONOCULAR DEPTH
ESTIMATION METHODS. The international archives of
the photogrammetry, remote sensing and spatial informa-
tion sciences/International archives of the photogrammetry,
remote sensing and spatial information sciences, XLVIII-
1/W3-2023: 137–144.
Ranftl, R.; Lasinger, K.; Hafner, D.; Schindler, K.; and
Koltun, V. 2022. Towards Robust Monocular Depth Estima-
tion: Mixing Datasets for Zero-Shot Cross-Dataset Transfer.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44(3): 1623–1637.
Sarızeybek, A. T.; and Isık, A. H. 2022. Monocular Depth
Estimation and Detection of Near Objects. Uluslararası
Teknolojik Bilimler Dergisi, 14(3): 124–131.
Tang, J. 2018. Intelligent Mobile Projects with TensorFlow:
Build 10+ Artificial Intelligence Apps Using TensorFlow
Mobile and Lite for IOS, Android, and Raspberry Pi. Packt
Publishing Ltd.
Tian, Y.; Chen, X.; Shen, Y.; Huang, Z.; Yuan, W.; and
Wang, H. 2021. Scene Understanding for Pedestrian Cross-
ing Assistance Using YOLOv4 and Depth Sensing. Sensors,
21(11): 3846.
Vijetha, U.; and Geetha, V. 2024. Obs-tackle: an obstacle
detection system to assist navigation of visually impaired
using smartphones. Machine Vision and Applications, 35(2):
20.
Vrysis, L.; Almaliotis, D.; Almpanidou, S.; Papadopoulou,
E. P.; Oikonomides, K.; Chatzisavvas, K. C.; and Karam-
patakis, V. 2024. Mobile software aids for people with low
vision. Multimedia Tools and Applications, 83(10): 30919–
30936.
Wang, Z.; Cui, Y.; and Lai, Z. 2019. A first look at mobile
intelligence: Architecture, experimentation and challenges.
IEEE Network, 33(4): 120–125.
X, M. 2024. blind assist1 Dataset. https://universe.roboflow.
com/markus-x-cgbeg/blind assist1. Visited on 2025-03-19.

Yu, S.; Lee, H.; and Kim, J. 2019. Lytnet: A convolutional
neural network for real-time pedestrian traffic lights and ze-
bra crossing recognition for the visually impaired. In Inter-
national Conference on Computer Analysis of Images and
Patterns, 259–270. Springer.
Zhang, K.; Wu, F.; Sun, H.; and Cai, M. 2024. Monocu-
lar vehicle speed detection based on improved YOLOX and
DeepSORT. Neural Computing and Applications, 36(17):
9643–9660.
Zhu, J.; and Fang, Y. 2019. Learning object-specific distance
from a monocular image. In Proceedings of the IEEE/CVF
International Conference on computer vision, 3839–3848.
Zuraimi, M. A. B.; and Zaman, F. H. K. 2021. Vehicle de-
tection and tracking using YOLO and DeepSORT. In 2021
IEEE 11th IEEE Symposium on Computer Applications &
Industrial Electronics (ISCAIE), 23–29. IEEE.


