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Abstract

Fuzzy clustering and perception are two fundamental con-
cepts in the field of ML that complement each other to en-
hance the understanding and processing of complex data. In
this paper, we focus on attributed networks and introduce a
novel framework for clustering networked data using joint
embedding and clustering. Our approach, based on entropy-
based regularization in the fuzzy clustering criterion, employs
low-rank subspaces and fuzzy clusters to better capture com-
plex relationships between content and structure informa-
tion, enhancing clustering robustness. Experiments on vari-
ous benchmark datasets for document clustering, using both
bag-of-words and large language model (LLM) representa-
tions, demonstrate that our algorithm surpasses state-of-the-
art clustering methods, including task-specific deep learning
approaches.

Introduction
Fuzzy clustering, also known as fuzzy grouping, is a data
partitioning technique that allows a data point to belong
to multiple clusters with varying degrees of membership.
Unlike traditional clustering methods where each point is
strictly assigned to a single cluster, fuzzy clustering better
reflects the reality of complex and ambiguous data by draw-
ing inspiration from human perception. For instance, fuzzy
clustering allows a medical document to belong to multi-
ple categories or clusters with varying degrees of member-
ship, thereby reflecting the multifaceted nature of medical
information. For instance, a document on ’cardiovascular
diseases’ and ’diabetes management’ can be 60% in ’Car-
diology’ and 40% in ’Endocrinology’ with fuzzy clustering,
reflecting its dual relevance better than a single category. By
integrating fuzzy clustering into ML systems, more robust
and adaptable models can be created, capable of handling
uncertainty and more accurately replicating human cognitive
processes, thereby improving artificial perception of data.

In this paper we focus on Attributed Networks (AN) (Qi
et al. 2012) which have been used to model real-world net-
works, including academic and health care networks. These
networks offer node links and attributes for analysis, unlike
plain networks with only node links. In AN, each node is
linked to a set of features, leading to two matrices. The first
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is a square matrix W of size n× n; W is constructed from
a graph represented by an adjacency matrix A. The second
is X of size n × d, the graph feature matrix, where each of
the n nodes is described by d features, as shown in Figure 1.

Figure 1: Information from AN can be split into X and W.

Recently, representation learning has become important
in fields like social and academic networks, and protein in-
teractions. ANE (Cai, Zheng, and Chang 2018) seeks to
create a compact node representation that preserves net-
work topology and node proximity by attributes. While NE
(Yu et al. 2019) has fostered several methods (Chang et al.
2015), ANE has been less explored. Unlike NE, ANE inte-
grates nodes’ proximity and attribute similarity, which dis-
tinguishes it from existing NE algorithms (Labiod and Nadif
2024).

Learned representations are beneficial for tasks like net-
work clustering (Wang et al. 2017), node visualization (Dai
et al. 2018), node classification (Huang, Li, and Hu 2017),
and link prediction (Pan et al. 2018). Consequently, tack-
ling high-dimensionality, sparsity, and nonlinearity is now a
critical research focus. However, these challenges are partic-
ularly pronounced in network clustering techniques. Often,
clustering techniques disappoint for two reasons: the contin-
uous embedding solution usually diverges from precise dis-
crete clustering, and information loss occurs between con-
tinuous embedding generation and discretization stages.

This paper introduces an objective function integrating
embedding and fuzzy clustering, unlike the separate consid-
erations of X and W. Our algorithm, based on this function,
employs low-rank subspace and fuzzy clustering to better
capture complex relationships between X and W, enhanc-
ing clustering robustness. The paper’s key contributions are
as follows:
1. First, we introduce a new ANE approach that integrates

data embedding and clustering into a unified framework,



incorporating information from X and W via entropy-
based regularization in the fuzzy clustering criterion.

2. Second, we introduce an optimization approach that ef-
ficiently manages large datasets by simultaneously per-
forming embedding and fuzzy clustering. This signif-
icantly reduces computational load while maintaining
high-quality clustering, making it ideal for real-world ap-
plications.

Related Work
Subspace clustering methods based on the self-expressive
property are commonly used on image data and have set
state-of-the-art results on the task of image clustering. One
of the earlier approaches was least-squares regression sub-
space clustering (LSR), which leverages a grouping effect
in the data. Newer models that make up the state-of-the-
art include Elastic-Net Subspace Clustering (EnSC) (You
et al. 2016) that uses ℓ1- and ℓ2-norm regularization, and
the Subspace Clustering through Orthogonal Matching Pur-
suit (SSC-OMP) (You, Robinson, and Vidal 2016) which
possesses a subspace-preserving affinity under broad condi-
tions. More recently, a new efficiency trend has appeared,
and some scalable models have also been proposed, e.g.,
k-Factorization Subspace Clustering (k-FSC) (Fan 2021)
which was put forward as a scalable subspace clustering
model that factorizes data into subsets via structured spar-
sity.

Regarding attributed-graph clustering, which refers to the
process of grouping nodes into clusters according to the
graph topology and node features, we can classify attributed
graph clustering models into two subsets. A first one, where
the goal is to learn graph representations and then use tradi-
tional clustering models such as k-means. Examples of mod-
els that use this approach include Simplified Graph Convolu-
tion (SGC) (Wu et al. 2019) which proposes a neighborhood
averaging process that corresponds to a fixed low-pass filter,
and Simple Spectral Graph Convolution (S²GC) which uses
a new method for the aggregation of K-hop neighborhoods
that is a trade-off of low- and high-pass filter bands (Zhu
and Koniusz 2021). On the other hand, the second class of
attributed graph clustering models proposes to include the
clustering objective into the representation learning process
to learn better results, e.g., Graph InfoClust (GIC) (Mavro-
matis and Karypis 2021) which generates clusters by maxi-
mizing mutual information between nodes contained in the
same cluster, and Graph Convolutional Clustering (GCC)
(Fettal, Labiod, and Nadif 2022) that performs clustering by
minimizing the difference between convolved node repre-
sentations and their reconstructed cluster representatives.

Notation. The dimensions of the matrices and the param-
eters are explicitly described below.
• Let n represent the number of nodes/objects, d the num-

ber of features, g the number of clusters, c the number of
retained components, λ the regularization parameter, and
p the power parameter.

• Let X ∈ Rn×d denote n data points described by d fea-
tures and let A ∈ {0, 1}n×n be an adjacency matrix on
the n data points.

• Let U = (Û1| . . . |Ûk| . . . |Ûg) ∈ Rn×g . We note Uk a
diagonal matrix of Ûk;

Uk = Diag(Ûk) =

u1k

. . .
unk

 .

Each uik denotes a membership value for node (i =
1, . . . , n) in the k-th cluster (k = 1, . . . , g), we have∑g

k=1 uik = 1.
• Let B ∈ Rn×c be the embedding of samples and Q ∈
Rd×c be the embedding of attributes.

• Let Z = (Z1| . . . |Zk| . . . |Zg) be a c × g matrix of the
centroids of the clusters; each Zk ∈ Rc×1 represents the
k-th centroid. Let 1 be a real n × 1 vector of ones, we
note Z̃k = 1Z⊤

k ∈ Rn×c; the rows of Z̃k are the Z⊤
k

duplicated n times.
• The symbol ’Tr’ represents the Trace of a matrix, and we

have ||K||2H =Tr(K⊤HK).

Content and Structure information
Combining data in attributed graphs is crucial in the cluster-
ing process. The quality of the results, or more specifically,
the ability to obtain relevant classes, fundamentally depends
on the pre-processing step. In the following section, we will
detail and justify the various steps involved in constructing
new matrices M and S from X, A and W.

Construction of M
An attributed network G = (V, E ,X) consists of the set
of nodes V , the set of links E ⊆ V × V , and X =
[x1,x2, . . . ,xn] where n = |V| and xi ∈ Rd is the fea-
ture/attribute vector of the node vi. Formally, the graph can
be represented by two types of information, namely con-
tent information X ∈ Rn×d and structure information A ∈
Rn×n, where A is an adjacency matrix of G and aij = 1 if
eij ∈ E otherwise 0; we consider that each node is a neigh-
bor of itself, then we set aii = 1 for all nodes. We therefore
model the proximity of the nodes using an (n × n) tran-
sition matrix W given by W = D−1A, where D is the
degree matrix of A defined by dii =

∑n
i′=1 ai′i. Since W

is a stochastic matrix (transition matrix), ∀p ∈ N∗, Wp is
stochastic and the construction of M such as

M = WpX (1)

can be viewed as an iterative process WpX; when p = 0
we have M = X. This process will converge to the ap-
proximated data WpX where each row moves towards its
prototype. In other words, this process converges to an equi-
librium state. With g denoting the number of eigenvalues of
Wp equal to 1, the matrix WpX is composed of g << n
quasi-similar rows where each row is represented by its pro-
totype. Thus, with this type of multiplicative smoothing, the
original data is transformed into a set of representative pro-
totypes. These prototypes capture the main characteristics
of the data, and the process converges to a stable state where
each data point is well represented by one of these proto-
types.



Construction of S
To utilize additional information about node similarity from
X, we first preprocess the above dataset X to produce in-
put from a similarity graph WX of size (n × n); then we
construct a K-Nearest-Neighbor (KNN) graph. To this end,
we use the heat kernel and L2 distance, KNN neighborhood
mode with a given K and we set the width of the neighbor-
hood σ = 1. Note that any appropriate distance or dissimi-
larity measure can be used. Finally, we combine the proxim-
ity of the nodes from both content information X and struc-
ture information W in an (n × n) matrix S. Thus, we pro-
pose perturbing the similarity W by adding the similarity
from WX; we choose to define S by

S = W +WX. (2)

By integrating WX, we overcome the problem of sparsity.
Later, we will see the interest in using WX in S; note that
S = S⊤.

How to combine the information from M and S?
From two types of smoothing, we have constructed the two
matrices M and S. We now propose to exploit these two
types of information in a clustering objective. To do this, we
propose to consider an objective function based on approxi-
mations of both M and S while sharing a common informa-
tion B and integrating the clustering objective given by

Φ(M,BQ⊤) + λ

g∑
k=1

Ψk(S, Z̃kB
⊤)

where Φ denotes the deviation between M and BQ⊤ while
Ψk denotes the deviation between S and Z̃kB

⊤. In other
words, we choose to regularize the approximation of M by a
term seeking to approximate S while taking into account the
structure into classes; λ is regularized parameter. Note that
if λ = 0, it is possible to consider only M. In the following,
we use the Frobenius norm as a deviation measure for the
functions Φ and Ψk.

Model and algorithm
Fuzzy clustering, or soft clustering, offers a more flexible
and nuanced approach to grouping data compared to tradi-
tional hard clustering. It handles uncertainty and ambigu-
ity by allowing data points to belong to multiple clusters
with varying degrees of membership, making it robust to
noise and outliers. This flexibility enhances interpretability
and is particularly useful in fields like pattern recognition,
image processing, and bioinformatics, where cluster bound-
aries are often not clear-cut. Algorithms such as Fuzzy C-
means (FCM) are widely used for fuzzy clustering, provid-
ing an efficient and optimizable method for analyzing com-
plex datasets. For all these reasons, we adopt this approach
in the context of attributed graphs.

Objective function
With M and S, the F-CAG method aims to obtain the max-
imally informative embedding with respect to the clustering
structure in the attributed network data. On the other hand,

in (Gao et al. 2019) for instance, the authors have shown
that exploiting the maximum entropy principle, as applied
to fuzzy clustering, provides a new perspective on facing the
problem of fuzzifying the clustering of the objects, whilst
ensuring the maximum compactness of the obtained clus-
ters. Thereby we propose the following objective function
to be minimized

F(B,Z,Q,U) = ∥M−BQ⊤∥2 + λ
( g∑

k=1

∥∥∥S− Z̃kB
⊤
∥∥∥2

Uk

+

g∑
k=1

n∑
i=1

uik log uik

)
(3)

with subject to B⊤B = Ic where Ic is a c by c identity
matrix. The first term represents a smoothed PCA criterion,
the second and third term represent a fuzzy clustering model
with an entropy regularization which makes the optimization
problem more numerically tractable and λ denotes a regular-
ized parameter. Our proposed method is solved by minimiz-
ing these two terms simultaneously. The intuition behind the
factorization of M and S is to encourage the nodes with sim-
ilar proximity, those with higher similarity in both matrices,
to have closer representations in the latent space given by B.
In doing so, the optimisation of (3) leads to a fuzzy cluster-
ing of the nodes into g clusters given by U. Finally Q can
be viewed as an embedding matrix of features.

Note that, both tasks –embedding and clustering– are
performed simultaneously and supported by B; it is the key
to attaining good embedding while taking into account the
clustering structure. Before tackling the estimation of the
unknown matrices B, Z, U and Q, we will first detail the
second term of (3).

Proposition 1. Given S ∈ Rn×n, Uk ∈ [0, 1]n×n, Z̃k ∈
Rn×c, B ∈ Rn×c and B⊤B = I then we have for each k

∥S− Z̃kB
⊤∥2Uk

= ∥S− SBB⊤∥2Uk
+ ∥SB− Z̃k∥2Uk

(4)

Proof. First, we have

∥A∥2Uk
= Tr(A⊤UkA)

= Tr(A⊤U0.5
k U0.5

k A)

= Tr((U0.5
k A)⊤(U0.5

k A))

= ∥U0.5
k A∥.

Using transition to the Frobenius norm and for convenience
taking Σk = U0.5

k , the equality (4) to prove becomes∥∥∥ΣkS−ΣkZ̃kB
⊤
∥∥∥2

=
∥∥∥ΣkS−ΣkSBB⊤

∥∥∥2

+
∥∥∥ΣkSB−ΣkZ̃k

∥∥∥2

(5)
First, since B⊤B = I and Tr(AB) = Tr(BA) we have

∥ΣkZ̃kB
⊤∥2 = Tr(BZ̃⊤

k Σ
⊤
k ΣkZ̃kB

⊤)

= Tr(Z̃⊤
k Σ

⊤
k ΣkZ̃k)

= ∥Z̃⊤
k Σk∥2.

Similarly we have ∥ΣkSBB⊤∥2 = ∥ΣkSB∥2; this leads
to

(a)
∥∥∥ΣkS−ΣkZ̃kB

⊤
∥∥∥ = ∥ΣkS∥2 + ∥Z̃⊤

k Σk∥2

− 2Tr(ΣkSΣkZ̃kB
⊤).



(b)∥ΣkS−ΣkSBB⊤∥2 = ∥ΣkS∥2 + ∥ΣkSBB⊤∥2

− 2Tr(ΣkSBB⊤Σ⊤
k S

⊤)

= ||ΣkS||2 + ||ΣkSB||2 − 2||ΣkSB||2

= ||ΣkS||2 − ||ΣkSB||2.

(c)∥ΣkSB−ΣkZ̃k∥2 = ∥ΣkSB∥2 + ∥Z̃⊤
k Σk∥2

− 2Tr(ΣkSΣkZ̃kB
⊤).

Summing (b) and (c) (terms on the right of (5)) for a given
k) leads to (a); Q.E.D.

Finally summing over k all the terms of eq.(5) leads to
eq.(4). Hence the second term of (3) (without λ) takes the
following form∑

k

∥∥S− SBB⊤∥∥2
Uk

+
∑
k

∥∥∥SB− Z̃k

∥∥∥2
Uk

.

Given that SB = ((sb)ij) is of reduced size n× c, note that
since ∀i,

∑g
k=1 uik = 1 the first term does not depend on

Uk and the second term takes the following form

∑
i,k

uik

d∑
j=1

(
(sb)ij − z̃kj

)2

.

Thus, we can identify the criterion for regularized fuzzy
clustering in the objective function (3)

∑
i,k

uik

d∑
j=1

(
(sb)ij − z̃kj

)2

+
∑
i,k

uik log(uik).

Optimization and algorithm
To infer the latent factor matrices Z, B, Q and U from
M = WpX and S = W + WX, we derive an alternating
optimization algorithm. In the following, we detail the
different steps involved in inferring B,Q, Z, and Uk.

Compute B. Update B for fixed Q,Zk and Uk. This is
equivalent to maximizing tr(MQ+λS

∑g
k=1 UkZ̃k) as fol-

lows: Let

SVD(MQ+ λS

g∑
k=1

UkZ̃k) = ADV⊤.

Then
B∗ = AV⊤. (6)

Compute Q. Given U, Z and B, (3) is reduced to
minQ

∥∥M−BQ⊤∥∥2
, and we get

Q = M⊤B. (7)

It is therefore possible to consider Q as an embedding of
attributes.

Compute Z. Zk is updated for fixed B, Q and Uk. Let
dik = ∥(SB)i − Zk∥2, this is equivalent to minimizing∑g

k=1

∑n
i=1 uikdik with respect to Zk. This yields to

Z⊤
k = (1⊤Uk1)

−11⊤UkSB (8)

Compute U. uik is updated for fixed B, Q and Zk . Let
dik = ∥(SB)i − Zk∥2, then, uik is updated by

uik =
exp(−dik

λ )∑g
ℓ=1 exp(−

diℓ

λ )
. (9)

The update of uik is derived as follows. Minimizing (3) un-
der the membership constraint

∑g
k=1 uik = 1 is equivalent

to minimizing
g∑

k=1

n∑
i=1

uikdik + λ

g∑
k=1

n∑
i=1

uik log uik − α(

g∑
k=1

uik − 1) (10)

Note that at the convergence of the algorithm that we de-
scribe below (Algorithm 1), we can deduce hard clustering
from U by applying the maximum a posteriori principle. It is

Algorithm 1: : F-CAGS algorithm

Input: M and S from structure matrix W and content
matrix X, g, c, p and λ ;
Initialize: B, Q and Z with arbitrary matrix;
repeat

(a) - Compute U using (9)
(b) - Compute B using (6)
(c) - Compute Q using (7)
(d) - Compute Zk using (8)

until convergence
Output: U: cluster matrix, Z: representation matrix, B:
node embedding matrix and Q: attribute embedding ma-
trix.

important to emphasize that at each step B makes use of the
information from the matrices Q, U, and Z. This highlights
one of the aspects of simultaneous embedding and cluster-
ing.

Relationships between F-CAG and other methods
We will now look at how our proposed F-CAG approach is
related to some other clustering and data embedding meth-
ods.

Smoothed PCA The new data representation referred to
as M = WX of size (n × d) can be viewed as a
multiplicative way of encoding information from both W
and X. Then the objective of F-CAG, defines a Graph-
regularized PCA on the smoothed matrix M. The first term
in (3) thus performs a PCA, on the centroid computed on
the neighborhood (barycenter) of each node. In fact, from
minB,Q

∥∥M−BQ⊤
∥∥2 plugging the optimal solution Q =

M⊤B leads to the following equivalent trace maximization
problem of a smoothed PCA

max
B

Tr(B⊤(MM⊤)B). (11)



Smoothed PCA with Fuzzy graph clustering regulariza-
tion From (3) and (11), the objective function of F-CAG
with respect to B has this form

max
B

Tr(B⊤(MM⊤)B+ λ(B⊤S

g∑
k=1

UkZ̃k)). (12)

This shows that the first term is related to a Smoothed
PCA and the second term represents a fuzzy graph clustering
regularization that enriches the Smoothed PCA by plug-
ging the graph structure via S and its clustering structure via∑g

k=1 UkZ̃k. The role of the representation matrix Z is to
closely maps out the memberships clustering matrix U to
the embedding matrix B and vice versa.

Convolutional Networks Graph Convolutional Networks
(GCNs) have experienced significant attention and have be-
come the popular methods for learning graph representa-
tions. Below, we establish the connection between the graph
convolution operator of GCN and the closed-form embed-
ding solution of the F-CAG formulation. We demonstrate
that the F-CAG embedding is SVD of the GCN embedding
and then can can achieve better or similar results to GCN
over several benchmark datasets.

Similar to other neural networks stacked with repeated
layers, GCN contains multiple graph convolution layers;
each of which is followed by a nonlinear activation (Wu et al.
2019; Chen et al. 2020). Let H(ℓ) be the ℓ-th layer hidden
representation, then GCN follows:

H(ℓ+1) = σ(WH(ℓ)Q(ℓ)) (13)

where Q(ℓ) is the ℓ-th layer parameter (to be learned),
H(0) = X and σ is the nonlinear activation function. Graph
convolution operation is defined as the formulation before
activation in the above formulation of H(ℓ+1). The graph
convolution (parameterized with Q) mapping the feature
matrix X to a new representation Y defined as Y = WXQ.
The embedding solution of F-CAG is given by the closed
form solution of the following problem

max
B

Tr
(
(MQ+ λS

g∑
k=1

UkZ̃k)B
⊤
)

s.t. B⊤B = I.

Let ÛΣ̂V̂⊤ be SVD of

(MQ+ λS

g∑
k=1

UkZ̃k)) = (WXQ+ λS

g∑
k=1

UkZ̃k))

= (Y + λS

g∑
k=1

UkZ̃k)).

Then, by setting λ = 0 B = ÛV̂⊤ is derived from the
singular value decomposition (SVD) of Y.

Numerical experiments
ANE Clustering is evaluated on datasets with predefined
clusters. Experiments involved datasets: ACM, DBLP, and
Wiki, with sparse bag-of-words vectors and citation links;

nodes are documents with class labels, edges are citation
links. These datasets are frequently utilized for the evalu-
ation of ANE clustering methods.The balance coefficient is
defined as the ratio of the number of documents in the small-
est class to the number of documents in the largest class.
while nz denotes the percentage of sparsity.

Table 1: The dataset statistics include the imbalance ratio
between the majority and minority classes, and nz% denotes
the percentage of sparsity.

Dataset Nodes Edges Features Classes nz% Imbalance
ACM 3025 16,153 1870 3 96.52 1.1
DBLP 4057 2,502,276 334 4 96.4 1.6
Wiki 2405 14,001 4973 17 86.46 45.1

Parameter settings and compared algorithms We com-
pare F-CAG with embedding-based methods and with other
methods that are explicitly for graph clustering. In our com-
parison, we include standard methods and also recent deep
learning methods; these differ in the way they use available
information. Some of them (such as K-means) use only
X as the baseline, while others use more recent algorithms
based on X and W. In Table 2 the following algorithms are
the baselines, described in (Fettal, Labiod, and Nadif 2023),
we used in our experiments:
• K-Means will be used as the simplest baseline.
• LSR is a subspace clustering model that incorporates the
ℓ2-norm regularization.

• EnSC is a subspace clustering model that incorporates
elastic net regularization (mix of ℓ1 and ℓ2 norm regular-
ization).

• SSC-OMP has a subspace-preserving affinity under
broad conditions.

• k-FSC is a scalable subspace clustering model that fac-
torizes model in subsets via structured sparsity.

• SC refers to the classical spectral clustering algorithm
applied on the original adjacency matrix of the graph.

• SGC proposes a neighborhood averaging process that
corresponds to a fixed low-pass filter.

• GIC generates clusters by maximizing mutual informa-
tion between nodes contained in the same cluster.

• S²GC proposes a new method for the aggregation of K-
hop neighborhoods that is a trade-off of low- and high-
pass filter bands.

• GCC performs clustering by minimizing the difference
between convolved node representations and their recon-
structed cluster representatives.

Clustering To evaluate F-CAGS against other methods,
we need to derive a hard clustering from the convergence
of F-CAG by applying the principle of maximum a poste-
riori. Thus, beyond accuracy, we retain Normalized Mutual
Information (NMI) (Strehl and Ghosh 2002) and Adjusted
Rand Index (ARI) (Steinley 2004); they are more effective
especially when clusters are imbalanced or numerous. ARI
measures similarity between data groups and relates to pre-
cision. NMI indicates how well estimated clustering reflects



true clustering, while ARI measures the agreement with the
reference partition. Both NMI and ARI reach 1 for perfect
clustering. Higher ACC/NMI/ARI values indicate better per-
formance, which is evaluated against true clusters. A clus-
tering algorithm performing well on these measures is likely
the best for the evaluated scenario.

Results and discussion Regarding the datasets ACM,
DBLP, and Wiki, we present in Table 2 the results of the vari-
ous clustering algorithms used in the literature for their eval-
uation (Li et al. 2021). Compared to the true available clus-
ters, in our experiments the clustering performance is eval-
uated by ACC, NMI and ARI. To obtain the values of these
metrics, we repeat the experiments 50 times and the aver-
ages (mean) are reported in Table 2; the best performance
for each dataset is highlighted in bold and the second is un-
derlined. In our experiments we took g = c and and tested
a set of (p, λ) values that will be discussed in Algorithm 2.
First, we observe the high performance of methods that in-
tegrate information from W. On the other hand, all meth-
ods, including deep learning algorithms based on X and W
are even better. However, regarding F-CAG with both ver-
sions relying on W, referred to as F-CAGW or S referred
to as F-CAGS, we note high performances for all datasets,
and with F-CAGS, we note the impact of WX; it learns
low-dimensional representations while suiting the cluster-
ing structure. To go further in our investigation and given
the sparsity of X we proceeded to standardization tf-idf fol-
lowed by ℓ2, as it is often used to process document-term
matrices; see e.g., (Affeldt, Labiod, and Nadif 2021, 2020;
Salah and Nadif 2017; Salah, Ailem, and Nadif 2018; Salah
and Nadif 2019; Febrissy et al. 2022), while in the construc-
tion of WX we used the cosine metric. From the results in
Table 2, we see the benefit of F-CAGS.

Assessing of p and λ To evaluate clustering quality, inter-
nal validity criteria are often used to rank solutions, known
as relative validity criteria. We propose using the Silhou-
ette Width Criterion (SWC) (Rousseeuw 1987) to estimate
hyperparameters (p, λ). SWC measures how well an object
fits its own cluster (cohesion) versus others (separation). It
ranges from −1 to 1, with higher values indicating better fit
within its cluster. For different (p, λ) values, we run F-CAG
and select the pair maximizing SWC (Algorithm 2).

Algorithm 2: : Estimation of p and λ

Input: M and S from structure matrix W and content
matrix X, g
for p = 1 to 20 do

for λ ∈ {0, 10−6, 10−3, 10−1, 100, 101, 103} do
(a) - Run F-CAG
(b) - Compute SWC

end for
end for
(p∗, λ∗) = max(p,λ) SWC
Output: (p∗, λ∗)

Document clustering without W In the domain of nat-
ural language processing (NLP), unsupervised learning is

prevalent. When dealing with unlabeled datasets, techniques
like clustering and visualization can enhance the usefulness
of textual data. The primary obstacle in document cluster-
ing is often how to represent the documents, with common
methods including Bag-Of-Words (BOW), like the imple-
mentation found in X for ACM, DBLP, and Wiki. Nonethe-
less, Large Language Models (LLMs) and perception are
two crucial elements in the field of ML that, together, are
revolutionizing the way machines understand and interact
with human language. LLMs, with their ability to process
and generate text contextually, mimic human perception
by interpreting the nuances and ambiguities of natural lan-
guage. This synergy enables the creation of systems capa-
ble of grasping complex concepts, adapting their responses
based on context, and continuously improving their under-
standing through learning. In the following we retain the
MiniLM model (Wang et al. 2020) which is a pre-trained
language model that uses knowledge distillation to compress
larger models, such as BERT, into smaller, more efficient
versions. Through the technique of ”Deep Self-Attention
Distillation,” MiniLM transfers knowledge from a ”teacher”
model to a ”student” model, creating lighter models that re-
tain much of the original models’ performance. These mod-
els are designed to be faster and more computationally ef-
ficient, making them suitable for real-time applications and
resource-constrained environments.

To evaluate F-CAGS we consider two coprus Classic4
and BBC. These collections are often used as benchmarks for
evaluating text classification and clustering techniques. BBC
News 1 is a dataset sourced from the BBC News, encom-
passes a collection of 2225 articles labeled across five cate-
gories: business, entertainment, politics, sport, and tech. The
Classic4 dataset is a well-known collection used in the field
of text mining. It is a collection of 7095 articles and con-
sists of four distinct document sets: CACM, CISI, CRAN,
and MED. According the MiniLM model we obtain both
matrices Classic4 (7095 × 384) and BBC (2225 × 384).
Without W, we construct a K-Nearest-Neighbor graph (KNN
with K = 15) to create the similarity graph WX of size
(n× n), simplifying the objective function to (3) with M =
Wp

XX and S = WX. Table 3 highlights the benefits of
introducing WX, even in the absence of W.

The UMAP algorithm achieves dimensionality reduction
through manifold learning techniques and concepts from
topological data analysis. Similar to the construction of
WX, the number of neighbors selected with UMAP is 15.
Figure 2 displays the visualizations obtained for X, M, and
B. This can be assessed using the Trustworthiness score
(Kaski et al. 2003), a metric that evaluates the quality of
dimensionality reduction techniques. It measures how well
the local structure of the data is preserved when transitioning
from a high-dimensional to a lower-dimensional space. Ad-
ditionally, to evaluate the compactness of clusters, we em-
ploy the silhouette metric. Table 4 showcases the effective-
ness of F-CAGS, particularly in terms of SWC.

1http://mlg.ucd.ie/datasets/bbc.html



Table 2: Clustering performance of the different models over ACM, DBLP and Wiki. The best results are highlighted in bold
font and the second best results are underlined.

Method Input ACM DBLP Wiki
ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means X 87.8 ±0.9 61.7 ±1.5 67.4 ±2.1 67.9 ±0.0 37.3 ±0.0 31.5 ±0.1 47.6 ±1.4 48.6 ±0.2 26.6 ±0.2

LSR X 78.6 ±0.0 43.1 ±0.0 48.3 ±0.0 69.4 ±0.1 34.7 ±0.1 36.4 ±0.2 17.8 ±0.5 2.8 ±1.7 0.3 ±0.2

EnSC X 83.8 ±0.0 53.0 ±0.0 58.6 ±0.0 30.0 ±0.1 0.8 ±0.2 0.1 ±0.0 47.5 ±0.0 45.2 ±0.2 30.2 ±0.1

SSC-OMP X 82.1 ±0.0 49.4 ±0.1 55.3 ±0.0 29.4 ±0.1 0.4 ±0.1 -0.1 ±0.0 37.8 ±8.5 34.4 ±9.1 21.2 ±7.9

k-FSC X 59.7 ±7.2 25.2 ±7.1 27.2 ±7.2 51.3 ±11.1 17.4 ±7.3 17.3 ±9.6 38.2 ±5.1 35.6 ±3.9 17.7 ±4.4

SC W 36.5 ±0.2 1.0 ±0.2 0.7 ±0.1 91.0 ±0.0 73.0 ±0.1 78.3 ±0.1 30.7 ±1.1 24.0 ±0.8 6.0 ±0.2

SGC W,X 83.7 ±0.0 55.7 ±0.0 58.8 ±0.0 88.8 ±0.0 69.5 ±0.0 73.2 ±0.0 51.9 ±0.8 49.6 ±0.2 28.6 ±0.1

GIC W,X 90.1 ±0.3 68.2 ±0.6 73.2 ±0.6 90.2 ±0.2 72.4 ±0.4 77.4 ±0.3 48.0 ±0.7 48.4 ±0.3 31.0 ±0.3

S²GC W,X 84.1 ±0.1 56.8 ±0.1 59.6 ±0.2 88.3 ±0.0 69.2 ±0.0 71.9 ±0.0 52.1 ±1.0 52.2 ±0.1 33.0 ±0.4

GCC W,X 91.3 ±0.0 71.2 ±0.1 76.0 ±0.1 91.8 ±0.0 74.5 ±0.0 80.5 ±0.0 53.7 ±1.4 53.5 ±0.5 31.6 ±1.1

F-CAGW W,X 90.4 ±0.0 68.4 ±0.01 73.9 ±0.01 93.7 ±0.0 78.9 ±00.2 84.7 ±0.02 53.0 ±0.01 49.4 ±0.02 36.0 ±0.01

F-CAGS S,X 91.5 ±0.1 71.04 ±0.02 76.7 ±0.1 93.76 ±0.1 79.1 ±0.02 84.6 ±0.02 56.7 ±0.01 52.4 ±0.02 39.0 ±0.01

X M B

-8 -6 -4 -2 0 2 4 6 8 10 12

-10

-5

0

5

10

15

UMAP on X

1

2

3

4

-15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

UMAP on M

2

3

4

5

-15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

UMAP on B

3

4

5

6

Classic4 dataset with 4 clusters

-8 -6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

8

UMAP on X

1

2

3

4

5

-10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

UMAP on M

1

2

3

4

5

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

UMAP on B

1

2

3

4

5

BBC dataset with 5 clusters

Figure 2: From top to bottom and from left to right, clusters projection using UMAP applied on X, M = Wp
XX and B.

Table 3: Clustering performances of F-CAG in terms of
ACC % , NMI % and ARI % on Classic4 and BBC datasets.

Input Classic4 BBC
(p∗, λ∗) = (6, 103) (p∗, λ∗) = (7, 101)

ACC NMI ARI ACC NMI ARI

X 79.18 68.93 46.07 92.58 80.19 82.90
X,WX 93.77 83.53 82.20 94.97 85.07 88.14

Table 4: Separability and compacteness of F-CAG in terms
of Trustworthiness (T) and SWC on Classic4 and BBC.

Input Classic4 BBC

X M B X M B

SWC 0.077 0.213 0.600 0.067 0.241 0.577
T 0.988 0.995 0.999 0.982 0.993 0.997



Conclusion and perspectives
We introduced a novel framework for clustering networked
data using joint embedding and clustering. Our approach
improves embedding and clustering performance while sig-
nificantly speeding up the process by clustering on a re-
duced matrix. Experiments on real-world benchmark net-
works show our algorithm F-CAGS outperforms state-of-
the-art methods. Additionally, if W is unavailable, using a
KNN approach to construct WX effectively enhances clus-
tering. Thereby, the integration of fuzzy clustering and per-
ception in machine learning, enhanced by Large Language
Models (LLMs), marks a significant advancement in pro-
cessing complex data. Fuzzy clustering, by allowing data
points to belong to multiple clusters, handles ambiguity and
uncertainty. LLMs contribute to this framework by provid-
ing context-aware text processing, enabling more nuanced
and accurate data representations. This can also help in in-
terpreting clusters, which is our goal for future work.
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