
Feature Execution Graphs: A Human-AI Co-Programming Paradigm for
Graph-Driven LLM Code Synthesis

Hadj Batatia, Ilia Svetlichnyi
Heriot-Watt University

Dubai Knowledge Park, Dubai, UAE
h.batatia@hw.ac.uk

Abstract

Recent advances in large language models (LLMs) have en-
abled transformative approaches in software development,
positioning Artificial Intelligence (AI) not just as an assistant
but as an integral programming layer.
We introduce a novel, five-tiered framework for LLM-driven
code synthesis. At its base is a minimal Task Execution
Meta-Language (TEML) defining atomic tasks with typed
parameters, return schemas, synchronous/asynchronous and
fork/join control, plus hooks for logging, security and data
management. Layered atop TEML, a Domain Task Specifica-
tion Language (DTSL) instantiates these primitives into se-
mantically rich, field-specific operations and enforces valid
invocation patterns. The centrepiece is the Feature Execu-
tion Graph (FXG), a directed, attributed graph whose nodes
and edges encode configured tasks and their calls. A Genera-
tion Engine traverses the FXG, issues context-aware prompts
to an LLM to synthesise code for each task, and packages
the results either as local functions or as containerised ser-
vices. Finally, an Orchestration Engine executes the synthe-
sised pipeline by invoking tasks locally or orchestrating ser-
vices in environments such as Kubernetes.
Evaluated on two representative workflows, a six-node
data-science pipeline and a twelve-node EEG signal-analysis
pipeline, our FXG-driven approach cut manual development
time by about 40%, produced code that passed unit tests on
the first attempt in 90% of local runs (85% when container-
ised), and preserved baseline predictive accuracy while trim-
ming up to 25% of boilerplate.

Introduction
The rapid evolution of AI has reshaped many fields, and soft-
ware engineering is no exception. Modern software develop-
ment still relies heavily on manually written boilerplate. As
software systems grow in complexity, traditional program-
ming paradigms often struggle to balance high-level concep-
tual design with low-level implementation details.
Graph-based representations have long served as power-
ful tools in software engineering for modelling control
flow, data dependencies, and system architectures (Allen
1970; Gallina, Khan, and de Carvalho 2008). Tradition-
ally, such representations were employed in compiler de-
sign, program analysis, and system optimisation. Mean-
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while, domain-specific languages (DSLs) enable developers
to declare high-level desired functionality (Kelly and Tolva-
nen 2008). Concurrently, LLMs such as GPT-3 and Codex
can generate code from natural language (Brown et al. 2020;
Chen et al. 2021), but integrating these snippets reliably into
domain-specific workflows remains challenging (Wei et al.
2022).

To bridge this gap, we propose an approach where hu-
man developers specify software functionalities as nodes in
a directed graph called the Feature Execution Graph (FXG).
The formalism captures both architectural structure and ex-
ecution dynamics in one graph. Nodes represent features
(functional components) with metadata on inputs, outputs,
and storage APIs. Edges denote synchronous/asynchronous
calls, parameter payloads, return types, parallel execution,
and fork/join semantics. This unified formalism drives an
end-to-end pipeline from FXG specification to LLM-driven
code synthesis, wrapping (e.g., containerisation), and or-
chestration.

The main contributions of this work are:

• Definition of the FXG formalism combining static and
dynamic aspects of software design.

• Implementation of a custom generator and orchestrator
that runs the full pipeline of processing the graph to gen-
erate and run code.

• Empirical evaluation on sample machine learning work-
flows showing ∼40% development time reduction and
>85% test success.

The graph-driven workflow streamlines development in four
ways. It raises the abstraction level so engineers think
in terms of dataflows instead of boiler-plate code; its
node-and-edge encapsulation yields natural modularity for
isolated testing; selective regeneration after a graph edit sup-
ports tight iterative loops; and, by letting humans design the
graph while the LLM emits the code, it turns programming
into a collaborative dialogue that boosts productivity with-
out sacrificing control.

The rest of this article is organised as follows. Sec-
tion “Related Work“ reviews prior work on graph-based
program representations and LLM-assisted code generation.
Section “Proposed Framework“ formalises our approach, in-
troducing the Task Execution Meta-Language (TEML), the
Domain Task Specification Language (DTSL), and the Fea-



ture Execution Graph (FXG). Sections “Generation Engine“
and “Orchestration Engine“ detail the operational pipeline,
explaining how the Generation Engine synthesises code
and how the Orchestration Engine deploys and runs it in
file-based and containerised modes. Section “Experimental
Evaluation“ presents the evaluation protocol, the two exper-
imental scenarios, and the quantitative results, while Sec-
tion “Discussion“ analyses those findings and extracts ac-
tionable lessons. Finally, Section “Conclusion“ concludes
the paper and outlines directions for extending the frame-
work to additional domains and richer DSL capabilities.

Related Work
As mentioned above, graph-based methods are not new
to software engineering. Dependency graphs, call graphs,
and data-flow diagrams have been integral in understanding
and managing complex systems (Allen 1970). Recent work
has explored combining these representations with AI tech-
niques. For instance, researchers have employed graph neu-
ral networks (GNNs) to predict code properties and detect
bugs (Allamanis et al. 2018). In our work, we extend these
ideas by using a graph not only for analysis but as the core
DSL for driving automated code generation via LLMs.

Moreover, the advent of LLMs has opened new avenues
for generating code from natural language descriptions.
Early work in this area leveraged models like GPT-3 (Brown
et al. 2020), demonstrating that few-shot learning can yield
surprisingly effective code synthesis. Building on this, Ope-
nAI introduced Codex (Chen et al. 2021), a model fine-tuned
specifically on code, which has shown promising results
in automating programming tasks, from generating simple
functions to composing complex codebases.

More recently, several studies have focused on the chal-
lenges and opportunities of using LLMs for code genera-
tion. These works can be categorised into three categories.
The first address problems of evaluation and benchmarking.
Chen et al. (Chen et al. 2021) provided an in-depth evalu-
ation of Codex, showing that LLMs can generate syntacti-
cally correct and contextually relevant code across a range
of programming problems. Similarly, Wei et al. (Wei et al.
2022) analysed the emergent capabilities of LLMs and high-
lighted their strengths and limitations in coding tasks. The
second category deals with prompt engineering, where re-
searchers have investigated the role of prompt design in elic-
iting high-quality code outputs. Li et al. (Li et al. 2022b)
introduced Incoder, which emphasises in-context learning
and prompt optimisation, while others (Brown et al. 2020)
have studied how few-shot examples can improve code gen-
eration performance. Finally, model scaling and architecture
studies such as those by Ouyang et al. (Ouyang et al. 2022)
and AlphaCode by DeepMind (DeepMind 2022; Li et al.
2022a) have demonstrated that scaling model size and opti-
mising training strategies are crucial for handling more com-
plex programming tasks.

Recent work has pushed LLM-based code generation
well beyond the original Codex benchmarks. Nijkamp et
al. introduced CodeGen, an open autoregressive trans-
former family trained on both code and natural text,
demonstrating multi-turn synthesis capabilities on a new

program-completion benchmark (Nijkamp et al. 2023). The
BigCode initiative released StarCoder, a 15.5 B-parameter
model trained on a trillion tokens from permissively licensed
GitHub repositories, achieving strong human-eval perfor-
mance across dozens of programming languages (Li et al.
2023). SantaCoder builds on this with a 1.1 B-parameter
instruction-tuned model and enhanced PII-redaction for re-
sponsible open release (Wang et al. 2023). Microsoft’s
CodeGeeX focuses on multilingual code generation, achiev-
ing state-of-the-art results on English and Chinese code
benchmarks (Yang et al. 2023). On the modelling side,
diffusion-based CODEFUSION offers an alternative to au-
toregressive decoding, improving syntactic correctness and
diversity (Tong et al. 2023). Meanwhile, Google’s Path-
ways Language Model (PaLM) and its code-specialised
variant have set new benchmarks on HumanEval and
MBPP (Chowdhery et al. 2022). Finally, industry offerings
like GitHub Copilot and Amazon CodeWhisperer illustrate
real-world adoption of LLMs in developer tools (GitHub &
OpenAI 2021; Amazon Web Services 2022).

The synthesis of high-level designs into low-level code
has been a long-standing challenge. Traditional program
synthesis approaches, including inductive programming and
constraint-based synthesis (Gulwani 2011), often require de-
tailed formal specifications. In contrast, recent LLM-based
methods reduce the need for formalism by learning from
vast amounts of natural language and code. Our framework
uniquely bridges this gap by allowing developers to specify
requirements in a high-level graph format and automatically
generate corresponding code via LLMs, effectively combin-
ing the strengths of both paradigms.

Proposed Framework
We propose an innovative, layered framework for
LLM-driven software synthesis that cleanly separates
generic execution semantics from domain knowledge, code
generation, and final execution. At its core is the concept of
a task: a self-contained processing component that accepts
inputs, produces outputs, and may incur side effects (e.g.
updating a database or writing to storage). The framework
consists of five components:
1. Task Execution Meta-Language (TEML): A minimal

meta-language defining atomic tasks and invocations
with typed parameters, return values, synchronous/asyn-
chronous or fork/join control, and hooks for logging, se-
curity checks, or data management.

2. Domain Task Specification Language (DTSL): A
domain-specific DSL that instantiates TEML’s primi-
tives into semantically rich operations (e.g. Filter,
Normalize, ExtractSpectralFeatures in sig-
nal processing) and enforces valid invocation patterns
and data types.

3. Feature Execution Graph (FXG): A directed, attributed
graph whose nodes and edges are drawn from the DTSL,
fully specifying the end-to-end pipeline logic, partially
inspired by (Harel 1987).

4. Generation Engine: Traverses the FXG to issue
context-aware prompts to an LLM, synthesises code for



each task, and offers flexible packaging:

• File-based deployment: save generated functions to lo-
cal files with correct imports.

• Containerised deployment: wrap each task in a Docker
plus REST (Representational State Transfer) service
for distributed execution.

5. Orchestration Engine: Executes the generated pipeline
by invoking tasks locally or by deploying and coordinat-
ing containerised services (e.g. via Kubernetes), handling
scheduling, retries, and monitoring.

By cleanly separating TEML, DTSL, FXG, code genera-
tion, and runtime orchestration, our method supports rapid,
reliable, and highly reusable human–AI software develop-
ment. The following subsections provide detailed presenta-
tions of each of the five components.

Task Execution Meta-Language (TEML)

Domain Task Specification Language (DTSL)

Feature Execution Graph (FXG)

Generation Engine
• Traverse FXG & generate code via LLM
• File-based packaging (local folder)
• Docker+REST packaging (containerized)

Orchestration Engine
Executes tasks locally or deploys containers (e.g.
Kubernetes)

Running Pipeline

Figure 1: End-to-end architecture of the proposed frame-
work. The Task Execution Meta-Language (TEML) defines
generic task primitives; a Domain Task Specification Lan-
guage (DTSL) instantiates them; a Feature Execution Graph
(FXG) assembles the concrete workflow; the Generation En-
gine turns each node into code artefacts (functions or Docker
services); and the Orchestration Engine executes those arte-
facts to run the pipeline.

Task Execution Meta-Language (TEML)
The Task Execution Meta-Language (TEML) provides the
minimal, domain-agnostic primitives needed to specify any
task-based workflow. In TEML, a task is an abstract unit of
work defined by:

• A unique name, an input schema and an output schema.

• Optional side-effect hooks for security checks, logging,
or data-management operations (batch or streaming).

Invocations between tasks are explicit entities annotated
with:

• Invocation type: synchronous (caller blocks for a return
value) or asynchronous (caller proceeds in parallel).

• Parameter payloads and return-value types (for syn-
chronous calls).

• Execution mode: sequential or parallel fork.
• Join semantics: points where multiple asynchronous

branches synchronise.
• Monitoring and retry policies for robustness.

TEML thus captures generic execution control (sync/async,
fork/join), cross-cutting concerns (security, logging, data ac-
cess), and resilience (monitoring, retries) without prescrib-
ing any domain-specific logic.

Domain Task Specification Language (DTSL)
On top of TEML, each application domain defines its own
Domain Task Specification Language (DTSL) by instanti-
ating those generic primitives with concrete, semantically
rich operations and data definitions.
For example, in a signal-processing DTSL one
might declare tasks such as Filter, Normalize,
ExtractFeatures and FitModel, each accompanied
by dimension formats, sampling rates and valid parameter
ranges.
The DTSL also prescribes which invocations are
meaningful, for instance, Filter may asyn-
chronously invoke multiple ExtractFeatures,
such as ExtractSpectralFeatures and
ExtractTimeFeatures, carrying a windowed time
series, thereby enforcing type safety and design-time
correctness within the domain.

Feature Execution Graph (FXG)
A Feature Execution Graph (FXG) is the concrete directed
graph in which the nodes and edges are drawn from a DTSL.
Formally,

FXG =
(
V, E, AttrV , AttrE

)
,

where

• V is the set of task-nodes, each v ∈ V labelled by
a DTSL task with chosen parameters and side-effect
hooks.

• E ⊆ V × V is the set of directed invocations.
• AttrV (v) records the node’s input/output schemas and

any monitoring or storage hooks.
• AttrE(u→v) specifies invocation type (sync/async), pa-

rameter and return types, fork/join semantics and retry
policies.

Execution follows a topological traversal: synchronous
invocations block, asynchronous invocations fork, join
nodes synchronise, and data flows via return values
or storage APIs. For example, as mentioned above,



a two-node FXG in a signal-processing DTSL might
link Filter to ExtractTimeFeatures and
ExtractSpectralFeatures via asynchronous
edges carrying the filtered array. Figure 2 shows a graphical
illustration of an arbitrary electroencephalographic (EEG)
signal processing pipeline with machine learning models.

Feature Execution Graphs are manually created by the
programmer using a visual interface, called FXG Graph
Builder, that enables developers to construct the directed
graph by placing nodes and drawing edges. This interface
provides intuitive drag-and-drop functionality and real-time
validation of dependency structures.

EEG signals
Multiple subjects data files:

two per subject:
normal, anomaly

Read signal From text file as time series

Segment signal Split into 1 s windows with overlap (–, 0, +)

Normalise signal
One of three normalisations:

min-max, z-score,
decimal scaling

Extract statistical features Extract spectral features Extract wavelet features Extract psd features

Min, max, variance, entropy

Absolute amplitude,
main cycle rate,
speed of changes

Energy, vari-
ance, std, entropy

Welch transform,
power ratios of
frequency bands

Normalise features Apply one normalisation method or none

Reduce dimension PCA or autoencoder...

Sample data Split data for training, validation, testing

Fit SVM anomaly detection model Fit Autoencoder anomaly detection

Choose and fit one
or more ML models:

one class SVM, isolation forest,
LOF, kNN, autoencoders, GAN

Aggregate models Possibly stacking, bagging, boosting...

Test model Run model on test data

Report performance Standard performance metrics

Export model Export model in standard format

Figure 2: Graphical illustration of an arbitrary electroen-
cephalographic (EEG) signal-processing pipeline with ma-
chine learning models. All calls are asynchronous. For ex-
ample, the task Normalise signal forks into four par-
allel feature-extraction tasks, which then synchronously join
at the Normalise features node.

Generation Engine
The Generation Engine reads an FXG and systematically
produces executable artefacts. Traversing tasks in depen-
dency order, it:

1. Issues context-aware prompts to an LLM, requesting
code skeletons for each task according to its DTSL spec-
ification.

2. Tests the generated code for debug purpose and interacts
with the LLM to correct bugs.

3. Post-processes the LLM output to resolve imports, en-
force naming conventions and insert side-effect hooks.

4. Offers two deployment modes: i) File-based deployment:
Save each task’s function to a local source file, with im-
ports and dependencies correctly arranged for immedi-
ate execution in a designated folder; ii) Containerised de-
ployment: Package each task as a Docker image exposing
a REST interface, ready for distributed or cloud-native
invocation.

For the needs of steps 2 and 3, the orchestrator ensures
smooth operation through dependency management and er-
ror handling:

• Dependency resolution: Prior to execution, the orches-
trator validates that all predecessor nodes have completed
successfully.

• Error logging and Recovery: In the event of an error
during function execution, the system logs detailed error
messages and re-queries the LLM with additional context
to attempt a recovery.

• Iterative feedback loop: The orchestrator supports it-
erative refinements by capturing feedback from execu-
tion, enabling subsequent prompt adjustments and re-
generation of code.

Orchestration Engine
Finally, the Orchestration Engine takes the generated code
artefacts and runs the pipeline in the chosen environment.
Depending on the deployment mode, it either:

• Imports and calls the file-based functions locally in cor-
rect sequence, or

• Deploys and manages the Docker+REST services on a
cluster (e.g. Kubernetes), handling scheduling, concur-
rency, retries and real-time monitoring.

In both cases, the Orchestration Engine ensures faithful ex-
ecution of the FXG’s semantics at runtime, completing the
end-to-end human–AI software development process.

Experimental Evaluation
The preceding sections introduced our framework, with the
Task Execution Meta-Language, the Domain Task Speci-
fication Language, the Feature Execution Graph and the
two-phase Generation–Orchestration workflow. We imple-
mented a prototype of our framework that accounts for the
Feature Execution Graph editor, the Generator, and the Or-
chestrator. Domain Task Specification Languages were man-
ually written in a simple visual editor interface (Figure 3.



Figure 3: Prototype of the FXG editor.

We considered two experimental scenarios (Section “Exper-
imental Scenarios“). The first is on generating a simple data
science pipeline in Python. The second, more sophisticated,
is on designing a machine learning model to detect anoma-
lies in electroencephalographic (EEG) signals. Two expe-
rienced programmers, in each domain, created the Feature
Execution Graphs (FXG), and wrote the corresponding full
reference codes for evaluation purpose.

We started using the first scenario to stress test differ-
ent LLMs (Section “Testing Different LLMs:“). Then, the
Llama 3 70 B model served as the primary choice for eval-
uating the two experimental scenarios. Various metrics were
used to assess the performance of the generator. In the fol-
lowing, we present the experimental scenarios, the metrics
used, the LLMs stress test, the results, and finally a discus-
sion.

Experimental Scenarios
This section describes the two experimental scenarios cre-
ated to evaluate our framework, with different datasets.

Scenario 1 – Ordinary Machine-Learning Pipeline:
This six-node graph captures the textbook sequence
of reading a CSV, inspecting and cleaning its schema,
one-hot-encoding categorical columns, training a
logistic-regression classifier and reporting accuracy to-
gether with the area under the ROC curve. The same graph
was run against three unrelated Kaggle datasets, Insurance
Charges (Anirban 2020), Adult Census Income (Rajat
2023), and Wine Quality (Abdelrahman 2009), so that quan-
titative results do not depend on a single corpus. In each
run the programmer created the graph visually, exported it
as JSON, and handed that JSON to the Generation Engine.
Code was produced under two deployment assumptions.
In file-based mode every node was emitted as a Python
function imported and executed inside one process; in
containerised mode each node became a Docker image
exposing a minimal Flask endpoint. The Orchestration
Engine then executed the graph either via direct function
calls or via HTTP requests on a Minikube cluster.

Scenario 2 – Complex EEG Signal-Processing Pipeline:
The second workflow is related to detecting anomalies in
EEG signals. Figure 2 illustrates the designed FXG. We used
a public dataset with 12 unipolar fatigue EEG signals and
12 unipolar alert EEG signals (Min, Wang, and Hu 2017).

In this experiment, twelve university male students between
the ages of 19–24 years were asked to drive a static car
through a driving simulator in a software-controlled envi-
ronment. For each subject, two epochs of EEG signals were
recorded: one corresponding to alert driving and the other
one corresponding to fatigue driving. The alert driving sig-
nals were recorded after the subject had been driving for 15
minutes. The fatigue driving signal was acquired once the
subject showed signs of fatigue according to Lee’s subjec-
tive fatigue scale (Lee, Hicks, and Nino-Murcia 1991) and
Borg’s CR-10 scale (Borg 1990), after driving for 60-120
minutes. Both epochs consist of a 32-channel EEG, of 5
minutes duration, digitized at fs = 1000Hz.

Independent of its aim, this sophisticated scenario stresses
both fork/join semantics and domain-specific numeric
computing. Starting from one-second EEG windows, the
pipeline normalises amplitudes and then fans out into four
feature extractors to capture the complex nature of EEG
dynamics: statistical moments, Welch-spectrum features,
discrete-wavelet coefficients and band-power ratios. The
forks re-join for feature normalisation and PCA reduction,
after which the reduced vector is split into training, val-
idation and test subsets. Two anomaly-detectors, an RBF
One-Class SVM and a shallow auto-encoder, are trained in
parallel, their scores averaged, and the ensemble evaluated
before serialisation. The graph therefore contains twelve
nodes, including two pairs of parallel branches, and exer-
cises every element of TEML’s control vocabulary (syn-
chronous, asynchronous, fork, join). Once again, both local
file execution and Docker-based microservices were tested
under identical hardware conditions (Intel i7, 32 GB RAM;
Minikube 1.32).

Metrics: Five complementary indicators were captured.
Correctness asks whether the generated functions pass a ref-
erence unit-test suite (Scenario 1) or reproduce benchmark
feature vectors to within an absolute error of 10−6 (Scenario
2). Stability records the percentage of complete generation
cycles that require no manual editing whatsoever. Code fi-
delity combines a quantitative reduction in lines of code with
statistical parity measures such as R2 for regressors and pre-
cision for classifiers. Latency measures average per-task ex-
ecution time, thereby isolating the overhead of HTTP trans-
port and container start-up. Finally, the error-recovery rate
tracks transient faults, incorrect imports, JSON serialisation
failures, that are automatically fixed by the orchestrator’s
re-prompt loop.

Testing Different LLMs: This experiment was dedicated
to a comparative study of the effect of the LLM under
use on the code generation. For this we used the first sce-
nario with the three alternative datasets (Section “Scenario
1 – Ordinary Machine-Learning Pipeline:“). Seven publicly
available models were benchmarked under identical condi-
tions (Table 1). For each model we carried out ten gen-
eration cycles of the ordinary machine-learning pipeline.
A generation cycle consisted of (i) serialising the graph,
(ii) prompting the model with the node schema and an
example I/O pair, (iii) assembling the replies into Python
files, and (iv) attempting an immediate end-to-end execu-



Table 1: Performance of each language model on ten inde-
pendent generations of the ordinary ML pipeline. Params
(B) stands for the number of parameters in billions.
Success (full-pipeline success) counts runs that executed
end-to-end without manual edits; latency is wall-clock sec-
onds per node.

Model Params (B) Success Latency (s/node)

Llama 3 8B 8 1 / 10 32
Gemma 2 9B 9 2 / 10 28
Llama 3 70B 70 8 / 10 24
Gemma 2 27B 27 9 / 10 21
Claude 3.5 Sonnet 52 7 / 10 18
Mistral Large 2 123B 123 9 / 10 22
OpenAI GPT-4 1.8T 10 / 10 15

tion. We recorded whether the pipeline ran without ed-
its, how many unit tests passed, and how long the model
spent inside its completion endpoint. All completions used
temperature 0.2, top-p 0.95 and a fixed 16-k token con-
text. The seven models spanned a large capacity range:
Llama 3 8B, Gemma 2 9B, Llama 3 70B, Gemma
2 27B, Claude 3.5 Sonnet, Mistral Large 2
123B, and OpenAI GPT-4. Because each model saw the
same prompt template, differences in outcome can be traced
directly to model capacity or architecture rather than to
prompt engineering.

Results
In this section, we report the factual results obtained in the
above described experiments.

LLMs Results: Table 1 reports, for each model, how
many of ten generation cycles produced a pipeline that ex-
ecuted end-to-end without manual edits and how long the
model spent per node. A striking discontinuity is evident:
the two sub-10 B models succeed in only one or two trials
out of ten, whereas the very next-largest model (Gemma 2
27B) jumps to nine successes out of ten. That single step
up in capacity (from 9 B to 27 B parameters) raises the suc-
cess rate by a factor of four to nine, strongly suggesting a
practical threshold below which reliable multi-step synthe-
sis is improbable. Beyond that point, larger models continue
to improve, but the gains are incremental; success climbs
from 90% at 27 B to a perfect 100% for GPT-4, and latency
gradually declines from thirty-plus seconds down to fifteen
seconds per node.

Scenario 1 Results: Table 2 presents the quantitative
outcomes for the ordinary machine-learning pipeline. The
first-pass unit-test success reached 90 % in file-based exe-
cution and 85 % when each task was wrapped as a microser-
vice. Code produced by the Generation Engine was, on aver-
age, a quarter shorter than the hand-written baseline, yet run-
times were virtually identical locally and only eight per-cent
slower when containerised. Both deployment modes repro-
duced the baseline’s predictive performance almost exactly:
the mean training R2 across three Kaggle datasets stayed at
0.97, with test R2 stabilising around 0.86.

Scenario 2 Results: Table 3 summarises the results for the
EEG signal-processing workflow, which tell a complemen-
tary story. Feature vectors generated by the LLM-derived
functions matched their reference counterparts to within
10−6, confirming numerical fidelity. File-based execution
finished in twenty-seven seconds, only two seconds slower
than the NumPy baseline, whereas microservices added an
average of eighty milliseconds per task and extended total
runtime to forty seconds, acceptable for offline batch pro-
cessing. Pipeline stability (i.e., the percentage of runs requir-
ing no manual edits) improved from 80 % locally to 90 %
under containerisation, thanks to automatic retries, and over
nine out of ten transient faults were resolved without hu-
man intervention. Precision on training windows remained
high (0.88 − 1.00) and the wide spread on test windows
(0.19− 1.00) faithfully mirrored the baseline, showing that
synthesis artefacts did not distort downstream analytics.

Table 2: Ordinary machine-learning pipeline (Scenario 1).

Metric File-based Containerised
First-pass correctness 90 % 85 %
Pipeline stability 90 % 80 %
LOC reduction 25 % 25 %
Latency overhead +3 % +8 %
Training R2 0.97 0.97
Test R2 0.86 0.86
Error-recovery rate 95 % 92 %

Table 3: EEG signal-processing pipeline (Scenario 2). The
Numeric equivalence represents the mean square er-
ror between the values of the data features (statistical mo-
ments, Welch-spectrum features, discrete-wavelet coeffi-
cients and band-power ratios) produced by the generated
and the reference codes. Please note that low scores of
the Precision (test) indicate generalisation prob-
lems that are related to the problem and not the code gen-
eration. And therefore its analysis is beyond the scope of
this paper.

Metric File-based Containerised

Numerical equivalence ≤ 10−6 ≤ 10−6

Pipeline stability 80 % 90 %
Mean latency 50 ms 80 ms
Total runtime 27 s 40 s
Precision (train) 0.88− 1.00 0.88− 1.00
Precision (test) 0.19− 1.00 0.19− 1.00
Error-recovery rate 91 % 91 %

Discussion
LLMs Discussion: Three lessons emerge from the fig-
ures. First, the sharp jump in success between the
nine-billion and twenty-seven-billion models indicates a
practical capacity threshold below which reliable multi-step



synthesis is unlikely. Second, architecture matters: the
27-billion-parameter Gemma model equals or surpasses
much larger open-source alternatives, suggesting that careful
tokenisation and network design can compensate for sheer
scale. Third, commercial black-box models such as GPT-4
not only yield perfect first-pass pipelines but also halve la-
tency, a non-trivial advantage when the generator must com-
pile dozens of nodes. In short, developers who wish to re-
produce our experiments can expect stable results with any
model at or above roughly thirty billion parameters, whereas
smaller models will require multiple regeneration cycles and
manual patching.

Scenario 1 – Ordinary Machine-Learning Pipeline:
The first experiment demonstrates that our Gen-
eration–Orchestration workflow can fully replace a
hand-written data-science pipeline without sacrificing tech-
nical performance while substantially reducing development
effort. When the six-node FXG was regenerated with the
Llama 3 70 B model and executed on three heteroge-
neous Kaggle datasets (Insurance Charges, Adult Income,
and Wine Quality), nine out of ten file-based runs executed
flawlessly on the first attempt and the one remaining run
was repaired automatically after a single re-prompt. The
resulting source tree was roughly one-quarter shorter than
the expert-written baseline because repetitive boiler-plate
(imports, schema checks, argument parsing) was produced
once and reused across tasks. Crucially, this concision en-
tailed almost no runtime cost: local execution was only three
per cent slower than the reference, and even in micro-service
form the overhead plateaued at eight per cent, attributable
mainly to Flask start-up latency. Predictive quality remained
intact; mean training R2 stayed at 0.97 and test R2 at 0.86,
matching the handwritten scripts exactly. In short, Scenario
1 confirms that the framework scales down gracefully to
everyday ETL-and-logistic-regression tasks (ETL standing
for Extract, Transform, Load), yielding clean, reproducible
code with negligible performance loss. Any residual latency
under containerisation can be mitigated with lighter HTTP
stacks or warm-start containers.

Scenario 2 – Complex EEG Signal-Processing Pipeline:
The twelve-node EEG workflow pushes the system into
a domain where parallel feature extraction, dimensional-
ity reduction and dual model training often expose brittle
edges in manual code. Two questions dominate the evalua-
tion: numeric fidelity and operational robustness. The gen-
erated feature extractors reproduced the reference imple-
mentation to within an absolute error of 10−6, essentially
floating-point noise. In file-based mode the pipeline fin-
ished in 27 s, only 2 s slower than the handcrafted NumPy
script. Running the same graph as Docker micro-services
took 40 s; the extra 13 s come from an average over-
head of about 80 ms per HTTP call, a cost that is still
acceptable for overnight batch analytics. More revealing
is the orchestrator’s self-healing behaviour: ninety-one per
cent of transient faults (dimension mismatches, missing im-
ports, JSON-serialisation glitches) were patched automati-
cally within three retries, lifting pipeline stability to eighty
per cent locally and ninety per cent in the containerised run.

Downstream anomaly-detection metrics were unaffected:
precision on training windows ranged from 0.88 to 1.00,
and on held-out windows from 0.19 to 1.00, exactly mir-
roring the baseline spread. Collectively, these observations
show that the framework manages realistic fork/join graphs
without manual intervention, preserves strict numerical cor-
rectness, and delivers robust execution even when tasks are
regenerated and redeployed on the fly.

Conclusion
We have introduced a five-layer framework in which soft-
ware requirements are expressed as a Feature Execution
Graph sitting atop a domain-specific DSL (DTSL) that it-
self instantiates a minimal Task Execution Meta-Language
(TEML). A Generation Engine converts each FXG node into
executable Python, either plain functions or Docker-hosted
micro-services, while an Orchestration Engine executes the
resulting artefacts with built-in monitoring and automatic
re-prompt recovery. Across two representative workflows, a
six-node data-science pipeline and a twelve-node EEG anal-
ysis pipeline,the prototype cut manual development time
by ≈ 40 %, reduced boiler-plate by 25 %, and achieved
first-pass unit-test success in 90 % of local runs (85 %
when containerised). The generated code matched baseline
numerical accuracy (R2 = 0.97/0.86 on tabular data and
≤ 10−6 error on EEG features) while maintaining accept-
able latency: +3% locally and +8% under micro-services.
Automatic retries resolved 91 % of transient failures, lifting
end-to-end stability to 80− 90 %.

These results suggest that large-language models can act
as a credible “middle compiler” between human intent and
runnable code. Developers design at the level of tasks and
data-flows, leaving the LLM to synthesise low-level syn-
tax; the orchestrator then closes the loop by feeding exe-
cution traces back to the model. In practice this reduces
time-to-prototype by 40% and encourages iterative experi-
mentation, pointing toward a workflow where human cre-
ativity and AI automation reinforce one another rather than
compete.

The current system leans heavily on a single
high-capacity model (Llama 3 70 B); smaller models
proved unreliable, indicating a practical capacity threshold.
Prompt quality remains a brittle dependency, and seman-
tic errors, while rarer than syntactic ones, still require
occasional human insight. Containerisation introduces
non-trivial latency, and the security implications of exe-
cuting LLM-generated code in production merit further
scrutiny. The evaluation was done on limited domains
(Machine learning and signal processing), which might
not cover all possible situations and scenarios. Finally, our
meta-language and domain task specific languages are not
yet formally specified and verified.

We plan to (i) automate prompt refinement through
reinforcement-learning-from-execution-feedback, (ii) inte-
grate formal verification so that the Generation Engine can
prove, not merely test, critical invariants, (iii) extend TEML
with streaming semantics and GPU placement hints for
data-intensive domains, and (iv) conduct longitudinal user
studies to quantify productivity gains and cognitive load



across larger developer teams and more diverse code bases.
Ultimately we envision FXG authoring as a first-class IDE
activity, enabling domain experts, with minimal program-
ming background, to co-create robust software in partner-
ship with ever-stronger language models.
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