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Abstract
Atrial fibrillation (AFib) is a common arrhythmia that is as-
sociated with increased stroke and mortality risk. It requires
early and accurate detection for improved patient healthcare
support. This study explores the application of vision-enabled
large language models (LLMs)—specifically LLaMA-3.2-
11B-Vision-Instruct and Qwen2-VL-7B—for AFib and sinus
rhythm detection using ECG images. We designed structured
prompts to simulate clinical reasoning, evaluate rhythm fea-
tures, and elicit model confidence. Models were tested on
a curated PTB-XL subset under both full 12-lead and dual-
lead (Lead II + V1) configurations. Results show that while
LLaMA achieves higher diagnostic accuracy, especially with
Chain-of-Thought prompting (up to 97% for AFib), both
models struggle with consistent feature-level interpretation,
particularly for sinus rhythm. Our findings underscore both
the promise and current limitations of LLMs in ECG-based
diagnosis. Bridging the gap between AI-generated outputs
and clinical standards will require fine-tuning on ECG-
specific data, robust prompting strategies, and hybrid ap-
proaches that integrate signal-level reasoning for improved
interpretability and reliability in real-world settings.

1 Introduction
AFib is the most common and life-threatening heart rhythm
disorder in the world. Today, it affects between 52 and 57
million people worldwide, nearly twice as many as in 1990
(Caffrey 2023; Tan et al. 2025). In the United States, a 2024
study found that approximately 10.5 million adults, or nearly
5% of the population, have been diagnosed with AFib, three
times more than previous estimates (Noubiap et al. 2024).
As the number of cases is projected to increase to 60% glob-
ally by 2050, there is an urgent need to better prevent, detect,
and manage this life threatening health irregularity (Lippi,
Sanchis-Gomar, and Cervellin 2021).

AFib is characterized by irregular rhythms and the ab-
sence of distinct P-waves, among other characteristics. Early
and accurate detection is essential, as it can greatly improve
patient outcomes by allowing timely preventive interven-
tions. As AI becomes increasingly integrated into clinical
workflows, effective human-AI collaboration offers new op-
portunities to support clinicians to make faster and more
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accurate diagnoses, particularly in resource-limited settings
where specialist interpretation of ECGs may be scarce.

This study investigates two such models—LLaMA-3.2-
11B-Vision-Instruct and Qwen2-VL-7B—for their ability to
detect and justify diagnoses of AFib and sinus rhythm from
ECG images. Structured prompts were crafted to guide the
models to simulate cardiologist reasoning, classify rhythms,
identify key waveform features, and report diagnostic confi-
dence. We evaluated model performance across full 12-lead
and reduced dual-lead (Lead II + V1) configurations, focus-
ing on both diagnostic accuracy and feature-level justifica-
tions.

Our results reveal several important trends. LLaMA
demonstrated superior diagnostic accuracy, particularly for
AFib detection, achieving up to 97% accuracy under Chain-
of-Thought prompting in the dual-lead setting. However,
its performance on sinus rhythm was modest, with just
33.67% accuracy on dual-lead ECGs. Moreover, despite
strong AFib performance, LLaMA consistently struggled
with PR interval interpretation (79.12%), indicating incom-
plete feature-level understanding. In contrast, Qwen per-
formed poorly overall and frequently returned empty or in-
correct responses, especially under sinus rhythm tasks. Even
when non-empty outputs were isolated, Qwen’s average per-
formance improved marginally by 13%, and only in a few
cases (e.g., Role Specification on sinus detection) did it
slightly surpass LLaMA on Chain-of-Thought. To further
test interpretability, we conducted an electrophysiologist-
guided re-prompting experiment focused on sinus rhythm
morphology. Both models—especially Qwen—failed to re-
liably confirm even basic waveform features such as upright
or biphasic P-waves, underscoring limitations in their inter-
nal electrophysiological reasoning.

These findings highlight both the promise and critical
gaps in using general-purpose vision-enabled LLMs for
ECG interpretation. While prompting strategies can influ-
ence outcomes, they do not compensate for the lack of
domain-specific internal knowledge. As such, we advocate
for future efforts to include fine-tuning on clinically anno-
tated ECG datasets and representational enhancements to
support reliable feature-level reasoning. Our work empha-
sizes the importance of human-AI collaboration, especially
in high-stakes clinical environments.



The remainder of the paper is organized as follows: Sec-
tion 2 provides background information, while Section 3 of-
fers an expert overview of key ECG components. Sections
4 and 5 outline the methodology and present the results, re-
spectively. Section 6 discusses the key insights derived from
the findings, followed by the conclusion in Section 7. Ap-
pendices A and B include sample prompts used for AFib
detection to illustrate the prompting approach and the tables
of all results performed.

2 Background and Related Work
2.1 LLMs in Healthcare
LLMs’ ability to comprehend and produce text that is
human-like has quickly made them a focus of medical AI.
Models such as GPT-3/GPT-4, PaLM, and others have been
evaluated on medical knowledge benchmarks. With a score
of roughly 67%, Google’s Med-PaLM (based on PaLM) was
the first to surpass the passing mark on USMLE-style ques-
tions. Its successor, Med-PaLM 2, also approached expert-
level performance with a score of about 86% (Singhal et al.
2023).These models show that LLMs are capable of remem-
bering and reasoning with an extensive amount of medical
data, including clinical facts and guidelines. In some sit-
uations, they can even draft responses that doctors prefer.
In addition to exams, LLMs have been used for tasks like
creating clinical notes, summarizing patient interactions,
and providing evidence-based recommendations to support
decision-making. Nevertheless, the majority of these appli-
cations have been textual in nature, meaning that both the
input and the output are text (medical questions, symptoms,
etc.). A more recent development is the application of LLMs
to multimodal inputs, like medical images. Introduced in late
2023, GPT-4 with vision demonstrated the ability to analyze
images, from X-rays to dermatology photos, by incorporat-
ing them into its conversational context (Koga and Du 2025).
GPT-4V was immediately probed by researchers using im-
age tasks specific to a given domain. As mentioned, GPT-4V
performed poorly in radiology when it came to diagnosing
images, correctly responding to fewer than half of image-
based questions. On visual inspection, the model frequently
generated analyses that sounded plausible but were factually
incorrect.(Medical Xpress 2024) These contradictory find-
ings imply that general LLMs’ visual comprehension is in-
ferior to their textual comprehension, particularly when it
comes to specialized medical imagery. However, the capa-
bility is still developing, and performance may be enhanced
by domain specific fine-tuning. By assessing how well ex-
isting multimodal LLMs handle ECG images—which are
different from natural images or standard radiographs and
have their own complexities (they are essentially time-series
plots of electrical signals)— our study advances this line of
research.

2.2 Prompt Engineering and Reasoning
One major advantage of LLMs is their ability to change be-
havior through prompts, without any need to retrain or alter
their underlying parameters. Researchers are actively devel-
oping efficient prompting strategies to improve performance

on reasoning-intensive medical tasks. One such method is
Chain-of-Thought prompting, which encourages the model
to generate step-by-step explanations before arriving at a fi-
nal answer. This approach loosely mirrors the way physi-
cians reason through complex cases by breaking down anal-
ysis into sequential, manageable steps.Wu, Chen, and Chen
(2023) extended Chain-of-Thought prompting to clinical di-
agnosis tasks and reported up to a 15% improvement in di-
agnostic accuracy using a “think-aloud” format.

Another emerging technique is role prompting, where the
model is assigned a specific persona—such as a cardiolo-
gist or medical resident—to simulate expert-level reasoning.
Early evidence suggests this can enhance factual consistency
in medical Q&A by anchoring the model’s output within the
expected style and content of domain experts. In this study,
we employ role prompting to ground the model’s reasoning
in a clinically relevant perspective.

While an LLM’s self-reported confidence is not rigor-
ously calibrated, the presence of a confidence estimate can
be informative. Prior human factors research indicates that
showing a confidence level can help users decide when to
trust an AI and when to be skeptical (Turner et al. 2020).
Having an AI flag for uncertainty could be very helpful for
critical diagnoses like AFib, where false positives could re-
sult in unnecessary treatment and false negatives could miss
a serious condition. A doctor would be able to do an addi-
tional review if the model indicated that it was uncertain.
In our experiments, we investigate the types of confidence
statements generated by the LLMs and their correlation with
actual correctness.

2.3 Interpretability and Trust
The ultimate objective of using LLMs for ECG interpreta-
tion is to improve interpretability and clinician confidence in
AI, not just raw performance. In the field of medical artificial
intelligence, there is a growing understanding that any algo-
rithm used in practice needs to be explicable, or at the very
least, provide evidence for its results. Even though they are
still in their beginnings, traditional ECG AI systems have be-
gun to incorporate some interpretable components (such as
highlighting specific ECG segments or reporting which cri-
teria were met). By producing free-text justifications, LLMs
provide a more comprehensive explanation—basically, an
interpretable story. However, one requires cautiousness be-
cause LLMs are also prone to factual hallucinations, which
means they may boldly claim that an ECG has a particu-
lar feature when in fact it does not. If left unchecked, such
behavior could be deceptive or even harmful. Thus, making
sure the LLM’s explanation is correct and consistent with
the real ECG features is a crucial part of establishing trust.
In this study, we assess not only whether the models ac-
curately label rhythms but also whether their explanations
align with clinical reality (for example, if the model asserts
that ”no P-waves are seen” or ”the rhythm is irregular”, are
those claims true based on the ground truth?). By dissecting
the LLMs’ outputs in this way, we address the reliability of
their interpretability. We also take into account more gen-
eral ethical and societal issues: accountability is a concern
because an LLM may make mistakes that a traditional al-



gorithm wouldn’t, and bias and fairness issues could arise
if the model’s performance varies across patient subgroups.
Although an extensive ethical analysis is outside the purview
of this article, we stress that this investigation is only the be-
ginning and that any practical implementation of such tech-
nology would necessitate stringent validation, bias checks,
and the establishment of explicit procedures for human su-
pervision.

3 Clinical Criteria for AFib and Sinus
Rhythm

As the foundation for both human and model interpretations
in this study, it is essential to define the distinguishing ECG
features of AFib versus normal sinus rhythm before diving
into methodology. The diagnostic criteria for sinus rhythm
and AFib are different, and they can be summarized as fol-
low:
• AFib: The ECG hallmark of AFib is an irregularly irregu-

lar rhythm – the R-R intervals (time between heartbeats)
follow no repetitive pattern (Heidbuchel et al. 2016).
In addition, P-waves are absent; instead of the normal
P-wave before each QRS complex, AFib shows either
chaotic fibrillatory waves or a flat baseline, reflecting
the disorganized atrial activity (January et al. 2019). The
ventricular response in AFib is typically rapid and highly
variable; heart rates often range from 90 to 170 beats per
minute, though slower or faster rates can occur. The QRS
complexes in AFib usually remain narrow (duration less
than 120 ms) since ventricular conduction is normal –
unless a pre-existing bundle branch block or an acces-
sory pathway is present, which would widen the QRS.
Another distinguishing feature is the absence of “saw-
tooth” flutter waves; this helps differentiate AFib from
atrial flutter, where flutter waves are present in a regular
pattern.

• Normal Sinus Rhythm: Sinus rhythm is the standard car-
diac rhythm originating from the sinus node. In ECG
terms, it is characterized by a regular rhythm – the P-P
intervals (and R-R intervals) are consistent, apart from
slight natural variations with breathing (sinus arrhyth-
mia). P-waves are present in front of every QRS com-
plex, and they have a uniform shape (all arising from the
sinus node) and a normal direction on the ECG leads. The
baseline between beats in normal sinus rhythm is stable
and isoelectric (flat), indicating absence of pathological
atrial activity. Heart rate in normalsinus rhythm typically
falls between 60 and 100 bpm at rest for adults. Some
other interval criteria can be present such as the PR inter-
val (onset of P to onset of QRS) should be about 120–200
ms, reflecting normal AV conduction delay, and the QRS
duration is less than 120 ms indicating normal intraven-
tricular conduction in normal sinus rhythm.

4 Methodology
Figure 1 illustrates the proposed methodology for classify-
ing AFib and sinus rhythm ECGs using LLMs. The pro-
cess begins with a curated dataset containing ECG im-
ages labeled with ground truth diagnoses. These images

are processed through various prompting techniques. Each
technique is designed to guide the LLM toward clinically
grounded and interpretable outputs. Initially, the methodol-
ogy was applied to the full 12-lead ECGs. To further investi-
gate the diagnostic relevance of individual leads, we sub-
sequently retried the process using only Lead II and V1,
which are commonly emphasized in rhythm analysis. The
selected prompting strategy is passed to the LLM, which
generates structured JSON outputs reflecting diagnostic in-
terpretation. Finally, these outputs are evaluated through an
automatic evaluation module that compares the model’s pre-
dictions against ground truth labels to assess accuracy, con-
sistency, and confidence calibration.

4.1 Dataset and Ground Truth Design
The dataset utilized in this study was a subset of the PTB-XL
dataset (Wagner et al. 2022, 2020) , consisting of randomly
chosen 100 ECG images representing AFib and other 2 ran-
domly chosen 100 ECG images representing Sinus Rhythm.
We define here the Sinus Rhythm as the standard rhythm
originating from the sinus node. It may include cases of
NORMAL Sinus Rhythm, defined earlier as having normal
PR interval, stable and isoelectric baseline activity, normal
heart rate and normal QRS morphology. And it may also in-
clude cases of abnormal Sinus Rhythm, whereby only the
P-wave morphology defines the rhythm as sinus, while the
other criteria of PR interval, baseline activity, rate and QRS
morphology are not normal. Therefore, for Sinus Rhythm
we defined the ground truth as P-waves present; P-waves
upright in leads II, III, and aVF (or lead II only in the dual-
lead setting); and P-waves biphasic in lead V1, whereas for
AFib we defined the ground truth as an irregularly irregular
rhythm; absent P-waves; and a PR interval that is not mea-
surable. Each ECG image was carefully annotated according
to clinically accepted diagnostic criteria. These standardized
criteria were used as the rubric for evaluating model outputs.

4.2 Prompt Design for AFib and Sinus Rhythm
We employed the same three prompting strategies described
in Section 2.2—Role Specification, Chain-of-Thought, and
Confidence Assessment— with tailored templates for AFib
and Sinus Rhythm. Example templates are provided in the
Appendix A.

4.3 Automation Workflow and Evaluation
Metrics

To optimize efficiency and minimize human error, the entire
experimental process was automated. The automated work-
flow consisted of several sequential steps:

API Integration: Python-based scripts automatically
sent ECG images and prompts to the LLaMA and Qwen
models via API calls. Responses from the models were au-
tomatically retrieved in structured JSON format and system-
atically stored for further processing.

LLaMA-3.2-11B-Vision-Instruct was evaluated via the
Hugging Face Inference API, while Qwen2-VL-7B was
served through a custom Hugging Face Inference endpoint
and queried over HTTP.



Figure 1: Methodology pipeline.

Automated Evaluation: To streamline our evaluation, we
stored all the LLaMA and Qwen outputs in a JSON file and
used an LLM to map them into one standardized format.
These unstructured LLM-based outputs were parsed using
custom scripts designed to compare each predicted feature
against the established ground truths. The scripts systemat-
ically computed multiple evaluation metrics for each diag-
nostic feature, including accuracy, error rates,at two granu-
larities: individual ECG features (such as Rhythm Regular-
ity, P-waves, Baseline Activity, Ventricular Rate, QRS Com-
plex Morphology, and PR Interval) and overall diagnostic
classifications (AFib vs. Non-AFib, Sinus Rhythm vs. Non-
Sinus Rhythm).

Visualization and Analysis: Prompt-level statistics were
summarized in tables, facilitating a direct comparison be-
tween the effectiveness of Role Specification, Chain-of-
Thought reasoning, and Confidence Assessment prompts.
All experiments were conducted on Google Colab using an
NVIDIA T4 GPU with 16 GB of memory; each API call to
the LLMs took approximately one minute per ECG image,
and all experiments were run only once.

5 Results
5.1 Performance on 12-Lead ECGs
We analyze the performance of the Qwen and LLaMA mod-
els on one run of full 12-lead ECG data and focused on their
ability to classify AFib and Sinus Rhythm cases and inter-
pret relevant ECG features, the results can be found in Table
1 and Table 2 in Appendix B.

Qwen Model

AFib Cases The Qwen model demonstrated extremely
limited diagnostic capability on AFib cases. It achieved a
diagnosis accuracy of only 8.87%, with a recall of 0.09 and
an F1-score of 0.16. Feature-level accuracy was similarly
low: Rhythm Regularity was correctly identified in 11.26%
of cases, P-waves in 5.12%, and PR Interval interpretation
in 9.22%.

Across prompting strategies, Role Specification yielded
the highest diagnostic accuracy at 11.11%, while Chain-of-
Thought and Confidence Assessment reached 8.16% and
7.29%, respectively. Under Role Specification, P-waves

peaked at 6.06%, while under Confidence Assessment, P-
wave detection fell to 5.21% and Rhythm regularity had an
accuracy of 15.62%.

Importantly, only 4 of the 26 correctly diagnosed AFib
cases had full feature accuracy. 22 cases contained at least
one error highlighting that Qwen was unable to justify its
AFib classifications through consistent multi-feature reason-
ing. Additionally, Qwen returned empty responses in 56% of
AFib cases, which were considered as incorrect.

Sinus Rhythm Cases The Qwen model’s performance on
Sinus Rhythm classification remained poor. It achieved a di-
agnosis accuracy of only 13.71%, with a recall of 0.14 and
an F1-score of 0.24. Feature-level accuracy was also low:
P-waves was correctly identified in 23.41% of cases.

Prompt-wise, Chain-of-Thought provided the highest di-
agnostic accuracy at 16.00%, followed by Confidence As-
sessment at 13.00% and Role Specification at 12.12%. Un-
der Chain-of-Thought, P-wave accuracy rose to 28.00% ,
whereas under Role Specification this was 22.22% ; Addi-
tionally, Qwen returned empty responses in 56% of Sinus
Rhythm cases, which were counted as incorrect.

LLaMA Model

AFib Cases The LLaMA model performed substantially
better than Qwen, with a diagnosis accuracy of 84.85%, re-
call of 0.85, and F1-score of 0.92. In terms of feature–level
performance: Rhythm Regularity was correctly identified in
88.22% of cases, P-waves in 92.59%, and PR Interval in
79.12%.

Among the prompting strategies, Role Specification pro-
duced a diagnostic accuracy of 77.78% and relatively good
feature extraction—85.86% for P-waves and 74.75% for
PR Interval. Chain–of–Thought improved further, achieving
93.94% diagnostic accuracy with P-waves at 98.99% and PR
Interval at 84.85%. Confidence Assessment also performed
well, with 82.83% diagnostic accuracy and feature accura-
cies of 92.93% for P-waves and 77.78% for PR Interval.

84.85% of correctly diagnosed AFib cases had fully accu-
rate supporting features; the remaining responses contained
at least one error.

Sinus Rhythm Cases The LLaMA model’s performance
on Sinus Rhythm cases was modest, achieving a diagnosis



accuracy of 25.51%, recall of 0.26, and F1-score of 0.41.
P-waves was correctly identified in 34.01% of the cases.

Prompt-wise, Chain-of-Thought delivered the best diag-
nostic accuracy at 35.71%, followed by Confidence Assess-
ment at 22.45% and Role Specification at 18.37%. Under
Chain-of-Thought, P-wave extraction reached 44.90%; un-
der Role Specification, P-waves accuracy was only 24.49%.

5.2 Performance on Lead II and Lead V1
The results can be found in Table 3 and Table 4 in Appendix
B.

Qwen Model

AFib Cases Using a reduced dual-lead configuration
(Lead II and Lead V1), Qwen’s diagnostic performance fur-
ther deteriorated. Overall diagnosis accuracy fell to 7.46%,
with recall of 0.07 and an F1-score of 0.14. Rhythm Regular-
ity was correctly identified in 10.51% of cases, and feature
extraction remained minimal: P-waves in 6.44%, PR Inter-
val in 7.46%.

Prompt-wise, Confidence Assessment achieved the high-
est diagnostic accuracy at 12.37%, followed by Role Spec-
ification at 6.06% and Chain-of-Thought at 4.04%. 13.6%
of the correctly diagnosed cases provided complete feature
justifications.. Qwen returned empty responses in 52.67% of
AFib cases, which were counted as incorrect.

Sinus Rhythm Cases Qwen’s diagnostic performance on
Sinus Rhythm improved modestly with the reduced dial-lead
configuration (Lead II and Lead V1), achieving an overall
diagnosis accuracy of 14.90%, with a recall of 0.15 and an
F1-score of 0.26. Feature-level accuracy remained low: P-
waves was correctly identified in 24.04% of the cases.

Prompt-wise, Role Specification yielded the highest diag-
nostic accuracy at 18.84%, followed by Confidence Assess-
ment at 13.24% and Chain-of-Thought at 12.68%. Under
Role Specification, P-waves reached 21.74%; under Chain-
of-Thought, P-waves peaked at 28.17%; Confidence As-
sessment remained weak with P-wave detection at 22.06%.
Qwen returned empty responses in 48.83% of Sinus Rhythm
cases, which were counted as incorrect.

LLaMA Model

AFib Cases LLaMA achieved strong diagnostic perfor-
mance in this configuration: 84.33% accuracy, recall of 0.84,
and F1-score of 0.92. Rhythm Regularity was correctly iden-
tified in 87.33% of cases, P-waves in 92.67%, and PR Inter-
val in 83.33% of the cases.

Among the prompting strategies, Chain-of-Thought pro-
duced the highest diagnostic accuracy at 97.00%, with P-
wave extraction of 99.00% and PR Interval accuracy of
92.00%. Role Specification followed, yielding 78.00% di-
agnostic accuracy and strong feature extraction for P-waves
(89.00%) and PR Interval (82.00%). Confidence Assess-
ment also performed well, with 78.00% diagnosis accuracy,
90.00% for P-waves, and 76.00% for PR Interval.

Out of all the correct AFib diagnoses, 91.7% achieved full
feature-level accuracy, with the remaining cases containing
at least one error.

Sinus Rhythm Cases The LLaMA model on the reduced
dual-lead configuration achieved a diagnosis accuracy of
33.67%, with a recall of 0.34 and an F1-score of 0.50.
Feature-level performance remained modest: P-waves were
correctly identified in 37.67% of the cases.

Prompt-wise, Chain-of-Thought produced the highest di-
agnostic accuracy at 44.00%, followed by Role Specification
at 37.00% and Confidence Assessment at 20.00%. Under
Chain-of-Thought, P-waves reached 47.00%. Under Role
Specification, P-waves accuracy was 42.00% Confidence
Assessment lagged, with P-waves at 24.00%.

We should note that even after discarding the empty files
in Qwen, the results remained similar with only an average
increase in accuracy of 13% in specific scenarios. More de-
tails are highlighted in Table 5, in Appendix B.

5.3 Electrophysiologist-Driven Re-Prompting
Experiment

On the same ECG dataset, our initial Sinus Rhythm
prompts—designed in consultation with allied healthcare
professionals—relied on a broader feature whether P-wave
is present or not. In response, the electrophysiologists dis-
tilled the definition of Sinus Rhythm to three essential, un-
ambiguous criteria: (1) P-waves present, (2) P-waves upright
in leads II/III/aVF (or II only for dual-lead recordings), and
(3) P-waves biphasic in V1. These features formed the basis
of our focused re-prompting experiment.

Sinus Rhythm ECGs tested previously in Section 5.2
were filtered to include only those image–prompt pairs in
which the model had marked P-waves as present. We then
re-submitted those same ECGs and prompts to each LLM
(LLaMA and Qwen) with a minimal JSON prompt requiring
confirmation of only the three electrophysiologist criteria.
Four conditions were tested: LLaMA on full 12-lead ECGs
(72 cases) and dual-lead ECGs (96 cases), and Qwen on full
12-lead ECGs (38 cases) and dual-lead ECGs (30 cases).

Results for Originally Correctly Diagnosed ECGs Un-
der LLaMA on 12-lead ECGs (72 cases), the overall diag-
nosis accuracy was 5.56%. P-wave presence was confirmed
in 27.78% of cases, upright-P morphology in 16.67%, and
biphasic-P morphology in 8.33%. Two responses satisfied
all three electrophysiologicals’ criteria while retaining the
Sinus Rhythm label, and two additional responses retained
the label despite missing at least one criterion.

In the dual-lead ECGs (96 cases), the precision of diag-
nosis with the LLaMA model was 7.29%, with a presence
of P-waves at 31.25%, upright-P in lead II at 14.58% and
biphasic-P in V1 at 18.75%. Seven responses met all three
criteria and retained the Sinus label, while three met some
but not all.

Under Qwen and in 12-lead ECGs (38 cases), the diag-
nosis precision was 7.89%, the presence of P-waves was
13.16%, upright-P was none and biphasic-P at 2.63%. Three
responses retained the Sinus label despite missing criteria,
but none satisfied all three. Qwen returned empty JSON out-
puts in 57.89% of these cases, which were counted as incor-
rect.

In the dual-lead ECG (30 cases) with the Qwen model,



none of the criteria was met and all characteristics were
recorded as ’none’. Qwen returned empty responses in 100%
of the cases which were all treated as incorrect.

For LLaMA model on the 12-lead subset, the Role Spec-
ification prompt reached a 6.25% overall accuracy while
confirming P-wave presence was 31.25%, upright-P mor-
phology 18.75%, and biphasic-P morphology 12.50%. The
Chain-of-Thought prompt achieved a 2.94% overall accu-
racy with P-wave presence at 26.47%, upright-P morphol-
ogy at 17.65%, and biphasic-P morphology at 5.88%. The
Confidence Assessment prompt scored a 9.09% overall ac-
curacy with P-wave presence at 27.27%, upright-P morphol-
ogy at 13.64%, and biphasic-P morphology at 9.09%.

On the dual-lead subset, Role Specification achieved a
2.94% overall accuracy with P-wave presence at 32.35%,
upright-P morphology at 17.65%, and biphasic-P morphol-
ogy at 20.59%. Chain-of-Thought reported a 13.95% over-
all accuracy with P-wave presence at 41.86%, upright-
P morphology at 16.28%, and biphasic-P morphology at
23.26%. Confidence Assessment did not produce any cor-
rect diagnoses while confirming P-wave presence, upright-
P morphology, and biphasic-P morphology each resulted in
5.26%.

Role Specification achieved with the Qwen model on the
12-lead subset, an 8.33% overall accuracy with P-wave pres-
ence at 8.33% and there was no confirmations of upright-
P or biphasic-P morphology. Chain-of-Thought achieved
no correct diagnosis with P-wave presence at 14.29% and
biphasic-P morphology at 7.14%. Confidence Assessment
achieved 16.67% overall accuracy with P-wave presence at
16.67% and no confirmations of upright or biphasic mor-
phology.

On the dual-lead subset, none of the prompts pro-
duced any correct diagnoses or confirmed any of the three
electrophysiologist-defined criteria.

Results for Originally Misdiagnosed ECGs Among the
28 LLaMA 12-lead cases with P-waves present but falsely
labelled Non-Sinus, diagnosis accuracy was 3.57%, P-wave
presence 17.86%, upright-P 10.71%, and biphasic-P none.
Only one response was correctly labelled as Sinus despite
missing at least 1 criteria.

For LLaMA on dual-lead misdiagnoses (17 cases), diag-
nosis accuracy was none, P-wave presence 17.65%, upright-
P none, and biphasic-P 11.76%;

For Qwen on 12-lead misdiagnoses (32 cases), diagnosis
accuracy was 3.12%, P-wave presence 3.12%, upright-P and
biphasic-P none. Qwen returned empty responses in 78.12%
of these cases.

For Qwen on the dual-lead misdiagnoses (20 cases), none
of the criteria were met and all features were none; Qwen
returned empty outputs in 100% of these cases which were
considered wrong.

In the 12-lead misdiagnosed subset, Role Specification
with LLaMA did not produce a correct diagnosis while con-
firming the presence of P-waves in 25% and upright mor-
phology in 25%, without biphasic-P confirmations. Chain-
of-Thought produced 10% overall accuracy with P-wave
presence at 20%, upright-P morphology at 10.00%, and no

biphasic-P confirmations. Confidence Assessment produced
no correct diagnosis with P-wave presence at 10% and no
confirmations of upright-P or biphasic-P morphology. In the
dual-lead subset, no prompt elicited any correct diagnoses,
but P-wave presence was confirmed in 75% and biphasic-P
morphology in 50% under Chain-of- Thought Prompting.

For Qwen on the misdiagnosed 12-lead cases, both the
Role Specification and Confidence Assessment prompts
failed to produce any correct diagnoses or confirm any ECG
features. Chain-of-Thought produced an overall accuracy of
7.14% with diagnosis and presence of P-waves and with-
out biphasi-P and upright-P confirmations. On the dual-lead
misdiagnosed subset, none of the prompts produced any
correct diagnoses or confirmed P-wave presence, upright-P
morphology, or biphasic-P morphology.

5.4 Discussion and Insights
Based on our experimental setup, our results highlight sev-
eral important trends:

First, model architecture plays an important role. LLaMA
consistently outperformed Qwen across both ECG configu-
rations for AFib cases, showing more robust diagnostic per-
formance and greater consistency in feature extraction. This
advantage is particularly evident for AFib detection, where
LLaMA paired with Chain-of-Thought prompting achieved
93.94% accuracy on 12-lead ECGs and 97.00% on dual-
lead (Lead II and V1) configurations. However, for Sinus
Rhythm detection, while LLaMA generally performed bet-
ter when including empty responses of Qwen, Qwen slightly
outperformed LLaMA in certain specific scenarios when
its empty responses were excluded (e.g., Qwen achieved
48.15% (Role Specification) vs. LLaMA’s 44.00% (Chain
of Thought) in diagnosis accuracy on dual-lead ECGs).
Nonetheless, both models exhibited significant limitations
in Sinus-Rhythm diagnosis and P-wave detection accuracy.

Second, prompting strategies had a substantial influ-
ence on model performance, with effectiveness varying by
rhythm type and model. For LLaMA, Chain-of-Thought
consistently provided the highest diagnostic accuracy across
AFib cases.

Third, lead configuration impacted each model differ-
ently. For LLaMA, reducing leads from twelve to two (Lead
II and V1) preserved its high AFib diagnostic accuracy
(84.85% → 84.33%) and led to a noticeable improvement
in Sinus Rhythm detection (25.51% → 33.67%), including
modest gains in P-wave detection. Conversely, Qwen experi-
enced a slight decrease in AFib accuracy (8.87% → 7.46%)
under the dual-lead setup and only minor improvement in Si-
nus Rhythm accuracy (13.71% → 14.90%), indicating min-
imal benefit from lead reduction for this model.

Fourth, although LLaMA achieved strong AFib diagnos-
tic performance (84.85%), the PR Interval was consistently
its weakest feature-level interpretation (79.12% accuracy),
clearly identifying this interval as the main source of resid-
ual errors.

Despite LLaMA’s relative success in AFib classification,
no model consistently provided full feature-level justifica-
tions across all conditions, which remains a critical limi-
tation for clinical reliability. This limitation is particularly



concerning in settings where explainability is essential for
decision support among physicians and allied healthcare
professionals.

While prompt engineering can guide LLMs towards
more structured reasoning, it does not fundamentally alter
their underlying knowledge. Fine-tuning on domain-specific
ECG datasets offers the potential to internalize clinically
relevant patterns and terminology, improving both rhythm
classification and feature-level interpretations such as P-
waves or PR Interval. This can lead to more consistent
justifications, reduced hallucinations, and better generaliza-
tion across lead configurations. Fine-tuning particularly en-
ables models to learn temporal and morphological relation-
ships intrinsic to ECG signals—such as timing between
waveforms or rhythm regularity—that are often missed with
prompt-only approaches. The limited improvements from
our electrophysiologist-guided re-prompting experiment re-
inforce the notion that these models lack sufficient inter-
nal understanding of electrophysiological criteria, suggest-
ing that structural or representational tuning is essential.
Therefore, fine-tuning represents a critical next step toward
enhancing the clinical reliability of LLM-based ECG analy-
sis.

6 Conclusion
This study evaluated the capabilities of vision-LLMs, specif-
ically LLaMA Vision and Qwen2-VL-7B, for diagnosing
and explaining AFib and Sinus Rhythm from ECG images,
using structured prompting strategies across one run of full
12-lead and dual-lead (Lead II + V1) configurations.

Our findings confirm that both model architectures and
prompting strategies significantly affect diagnostic accuracy
and feature-level reasoning. LLaMA consistently outper-
formed Qwen, achieving higher accuracy for AFib detec-
tion—especially under Chain-of-Thought prompting—and
demonstrating strong performance on key features such as
P-waves. However, its performance on Sinus Rhythm inter-
pretation remained modest, and neither model reliably pro-
duced full multi-feature explanations. Qwen performed sub-
stantially worse overall, with poor diagnostic and feature-
level accuracy across configurations. However, in limited
instances when empty responses were excluded, Qwen nar-
rowly outperformed LLaMA for Sinus Rhythm detection,
indicating some conditional utility under specific prompting
strategies and non-empty conditions.

Lead configuration also influenced results: reducing to
Lead II and V1 preserved LLaMA’s strong AFib perfor-
mance while noticeably improving Sinus Rhythm detection
accuracy (25.51% → 33.67%), though overall accuracy for
Sinus Rhythm remained relatively low, highlighting contin-
ued challenges for both models. In contrast, Qwen saw min-
imal positive impact from lead reduction.

Our electrophysiologist-driven re-prompting experiment
further revealed that even when LLMs correctly detected P-
waves, they frequently failed to confirm basic morpholog-
ical criteria—such as upright P-waves in inferior leads or
biphasic-P morphology in V1—highlighting a lack of deep
waveform understanding and limiting trustworthiness.

These results highlight the potential of LLMs in ECG-
based diagnosis yet our work underscores the need for en-
hanced feature-level reasoning and generalization. Future
work should explore dynamic prompt mixing and fine-
tuning on clinically annotated ECG datasets to include de-
tailed waveform features and testing across broader datasets.
Promising directions include evaluating models explicitly
trained for ECG image understanding, and conducting lead-
level failure analyses to inform dynamic attention mecha-
nisms and targeted model refinement.

Most importantly, our results highlighted the inher-
ent weaknesses faced by LLMs within our experimental
pipeline. Particularly when tasked beyond diagnosis, these
LLMs are not capable of reliable explainability for feature
identification. Additionally, the text-to-text mapping step
performed by LLMs introduced another source of potential
hallucination and inaccuracies due to ambiguous interpreta-
tions or overconfidence in the GenAI produced JSON files.
These limitations reinforce the essential role of human-AI
collaboration in clinical ECG analysis. In their current matu-
rity, AI systems should be deployed alongside human over-
sight to ensure reliability, accuracy, and clinical utility.
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A Prompts Used for AFib
Prompt 1: Role Specification

As an experienced cardiologist, analyze the provided ECG image to determine if it indicates an AFIB or NON-AFIB case. Respond
strictly in JSON format, without additional explanations or comments. The response must follow this structure:

{
"Diagnosis": "[AFIB/NON-AFIB]",
"Rhythm Regularity": "[Regular/Irregularly Irregular/Regularly Irregular]",
"P Waves": "[Present/Absent]",
"PR Interval": "[Normal/Variable/Prolonged/Short/Not Measurable]"

}

Prompt 2: Chain-of-Thought Reasoning

Analyze the provided ECG image step by step to determine if it represents an AFIB or NON-AFIB case. Respond strictly in JSON
format, without additional explanations or comments. The response must follow this structure:

{
"Diagnosis": "[AFIB/NON-AFIB]",
"Rhythm Regularity": "[Regular/Irregularly Irregular/Regularly Irregular]",
"P Waves": "[Present/Absent]",
"PR Interval": "[Normal/Variable/Prolonged/Short/Not Measurable]"

}

Prompt 3: Confidence Assessment

Evaluate the provided ECG image to determine if it indicates an AFIB or NON-AFIB case. Respond strictly in JSON format, without
additional explanations or comments. Include confidence levels.

{
"Diagnosis":{
"Observation":"[AFIB/NON-AFIB]",

"Confidence Level": "[High/Medium/Low]"
},
"Rhythm Regularity": {

"Observation": "[...]",
"Confidence": "[High/Medium/Low]"

},
"P Waves": {

"Observation": "[...]",
"Confidence": "[High/Medium/Low]"

},
"PR Interval": {

"Observation": "[...]",
"Confidence": "[High/Medium/Low]"

}
}



B Summary Tables of Results

Prompt Feature Qwen2-VL-7B LLaMA-3.2-11B-Vision-Instruct
Accuracy (%) Recall F1-Score Accuracy (%) Recall F1-Score

Role Specification Diagnosis 12.12 0.12 0.22 18.37 0.18 0.31
P Waves 22.22 0.22 0.36 24.49 0.24 0.39

Chain-of- Thought Diagnosis 16.00 0.16 0.28 35.71 0.36 0.53
P Waves 28.00 0.28 0.44 44.90 0.45 0.62

Confidence Assessment Diagnosis 13.00 0.13 0.23 22.45 0.22 0.37
P Waves 20.00 0.20 0.33 32.65 0.33 0.49

Table 1: Comparison of Qwen and LLaMA Models on the 12-Lead ECG for Sinus Rhythm Using Different Prompting Strategies

Prompt Feature Qwen2-VL-7B LLaMA-3.2-11B-Vision-Instruct
Accuracy (%) Recall F1-Score Accuracy (%) Recall F1-Score

Role Specification

Diagnosis 11.11 0.11 0.20 77.78 0.78 0.88
Rhythm Regularity 10.10 0.10 0.18 79.80 0.80 0.89
P Waves 6.06 0.06 0.11 85.86 0.86 0.92
PR Interval 7.07 0.07 0.13 74.75 0.75 0.86

Chain-of- Thought

Diagnosis 8.16 0.08 0.15 93.94 0.94 0.97
Rhythm Regularity 8.16 0.08 0.15 96.97 0.97 0.98
P Waves 4.08 0.04 0.08 98.99 0.99 0.99
PR Interval 7.14 0.07 0.13 84.85 0.85 0.92

Confidence Assessment

Diagnosis 7.29 0.07 0.14 82.83 0.83 0.91
Rhythm Regularity 15.62 0.16 0.27 87.88 0.88 0.94
P Waves 5.21 0.05 0.10 92.93 0.93 0.96
PR Interval 13.54 0.14 0.24 77.78 0.78 0.88

Table 2: Comparison of Qwen and LLaMA Models on the 12-Lead ECG for AFib Using Different Prompting Strategies



Prompt Feature Qwen2-VL-7B LLaMA-3.2-11B-Vision-Instruct
Accuracy (%) Recall F1-Score Accuracy (%) Recall F1-Score

Role Specification Diagnosis 18.84 0.19 0.32 37.00 0.37 0.54
P Waves 21.74 0.22 0.36 42.00 0.42 0.59

Chain-of- Thought Diagnosis 12.68 0.13 0.23 44.00 0.44 0.61
P Waves 28.17 0.28 0.44 47.00 0.47 0.64

Confidence Assessment Diagnosis 13.24 0.13 0.23 20.00 0.20 0.33
P Waves 22.06 0.22 0.36 24.00 0.24 0.39

Table 3: Comparison of Qwen and LLaMA Models on Leads II and V1 Only For Sinus Rhythm Using Different Prompting
Strategies

Prompt Feature Qwen2-VL-7B LLaMA-3.2-11B-Vision-Instruct
Accuracy (%) Recall F1-Score Accuracy (%) Recall F1-Score

Role Specification

Diagnosis 6.06 0.06 0.11 78.00 0.78 0.88
Rhythm Regularity 9.09 0.09 0.17 82.00 0.82 0.90
P Waves 4.04 0.04 0.08 89.00 0.89 0.94
PR Interval 6.06 0.06 0.11 82.00 0.82 0.90

Chain-of- Thought

Diagnosis 4.04 0.04 0.08 97.00 0.97 0.98
Rhythm Regularity 5.05 0.05 0.10 98.00 0.98 0.99
P Waves 4.04 0.04 0.08 99.00 0.99 0.99
PR Interval 4.04 0.04 0.08 92.00 0.92 0.96

Confidence Assessment

Diagnosis 12.37 0.12 0.22 78.00 0.78 0.88
Rhythm Regularity 17.53 0.18 0.30 82.00 0.82 0.90
P Waves 11.34 0.11 0.20 90.00 0.90 0.95
PR Interval 12.37 0.12 0.22 76.00 0.76 0.86

Table 4: Comparison of Qwen and LLaMA Models on Leads II and V1 Only for AFib Using Different Prompting Strategies

Type Prompting Strategy Feature 2-Lead ECG (%) 12-lead ECG (%)

AFib

Role Specification Diagnosis 15.00 24.39
Rhythm Regularity 22.50 21.95
P Waves 10.00 12.20
PR Interval 15.00 17.07

Chain-of-Thought Diagnosis 8.33 17.39
Rhythm Regularity 10.42 17.39
P Waves 8.33 8.70
PR Interval 8.33 15.22

Confidence Assessment Diagnosis 18.00 18.42
Rhythm Regularity 28.00 36.84
P Waves 22.00 7.89
PR Interval 24.00 31.58

Sinus

Role Specification Diagnosis 48.15 27.91
P Waves 55.56 51.16

Chain-of-Thought Diagnosis 21.43 30.00
P Waves 47.62 54.00

Confidence Assessment Diagnosis 25.71 26.83
P Waves 37.14 43.90

Table 5: Comparison of Accuracy Performance across Lead Configurations for AFib and Sinus Rhythm Detection using Dif-
ferent Prompting Strategies in Qwen (non-empty files).


