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Abstract

In this paper, a novel large language model (LLM)-based
context-aware autonomous drone navigation algorithm is pre-
sented. This approach demonstrates the capability of LLMs
to navigate complex environments by balancing multisensor
objectives with a weighted prioritization system. Specifically,
we incorporate weights for the goals of obstacle avoidance,
weather adaptation, and mission completion. The model’s
performance is tested under six progressively intricate scenar-
ios in extensive simulations focused on path efficiency, com-
pletion time, and success rate. Results indicate that the LLM-
based context-aware navigation algorithm achieves 94% suc-
cess rate in simple environment in a moderate weather con-
ditions conditions with reasonable efficiency, and surpasses
expectations in the advanced AI driven obstacle reasoning.
These results illustrate the emerging strengths of LLMs for
autonomous navigation and its potential utilization in situa-
tion where environmental conditions change dynamically.

Introduction
The implementation of autonomous navigation for un-
manned aerial vehicles (UAVs) presents a significant chal-
lenge in ever-changing dynamic environment and weather
conditions. Modern UAVs must perform robust navigation in
complex, unstructured settings while handling uncertainties
from various sources including sensor noise, environmental
disturbances, and dynamic obstacles (Kendoul 2012). These
challenges become particularly pronounced when UAVs op-
erate in congested urban environments, remote areas with
limited connectivity, or in adverse weather conditions where
traditional navigation techniques may falter.

A significant portion of research and development fo-
cuses on path planning and control systems is based on
potential field algorithms (Khatib 1986), rapidly-exploring
random trees (RRT) (LaValle 1998), and model predictive
control (Furrer et al. 2016). While these classical methods
provide reliable performance in structured environments,
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they often struggle with adaptability and generalization to
novel scenarios. The recent developments include reinforce-
ment learning (Hwangbo et al. 2017) and imitation learn-
ing (Codevilla et al. 2018) which further increase adaptabil-
ity to other environments. These learning-based approaches
enable UAVs to learn navigation policies directly from ex-
perience or human demonstration, potentially offering more
robust performance in complex, dynamic settings.

Fusing LLMs with robotics has opened a new door to
exploration, applying their reasoning and knowledge of the
world to robotic tasks. So far, the exploration of LLMs has
focused on task planning (Ahn et al. 2023), robot control
(Huang et al. 2022) and human-robot interactions (Wu et al.
2023). Their utilization for real-time navigation of drones is
still a gap in the literature, particularly with advanced mod-
els like DeepSeek which uses reasoning and uncertainty-
based decision-making capabilities. The ability of LLMs to
understand context, reason about spatial relationships, and
make decisions based on multiple objectives makes them
promising candidates for addressing the complex challenges
of autonomous drone navigation.

The combination of techniques involving sensor fusion
helps in merging data from different sensors to enhance
the perception accuracy and overall robustness. Autonomous
decision making processes are usually performed using hier-
archical frameworks which separate high-level planning and
low-level control actions (Brunner et al. 2016).

The progress made in artificial intelligence, especially
on large language models (LLMs), has shown improve-
ments in reasoning, planning, and decision-making capabili-
ties (Brown et al. 2023). Han et al. (Han et al. 2025) proposes
a real-time event responsive intelligent multi-agent system
for autonomous High-Altitude Platform Station (HAPS) co-
ordination. Yang et al. (Yang et al. 2024) presented an ad-
vanced LLM-guided reinforcement learning architecture for
the flight control of 6 degree of freedom systems, achiev-
ing a higher level of stratum adaptability and precision ma-
neuvering capability. Liu et al. (Liu et al. 2024) investigated
the potential of LLMs for enhancing deployable intelligent
surfaces in terms of energy efficiency and reliability for 6G
Internet of Vehicles (IoV).



These models demonstrate an impressive ability to under-
stand and generate natural language. Furthermore, they ex-
hibit emergent reasoning capabilities that can be applied to
complex problem-solving tasks. Their ability to perform in-
context learning and few-shot adaptation makes them partic-
ularly suitable for dynamic navigation scenarios. Addition-
ally, LLMs offer the potential for more explainable decision-
making processes, as they can articulate the reasoning be-
hind their navigation choices in natural language.

This paper examines the use of an LLM for autonomous
decision making in drone navigation. We propose an LLM-
based context-aware model which analyzes multi-modal
sensor data and reasons on how to navigate optimally while
balancing numerous factors including obstacle avoidance,
mission completion, and environmental adaptation. Our ap-
proach builds upon recent research in embodied AI (Duan,
Jia, and Chen 2022) and neuro-symbolic systems(Garcez
and Lamb 2020), providing a novel integration of symbolic
reasoning with deep learning for drone navigation.

Main contributions of this resarch include:
1. Development of a new architecture that integrates LLM-

based context-aware navigation for autonomous drone.
2. Rigorous evaluation using a range of simulated naviga-

tional challenges of differing complexity, demonstrating
significant improvements over traditional methods.

The proposed approach opens new avenues for develop-
ing more intelligent, adaptable, and robust autonomous nav-
igation systems that can understand and respond to the rich
complexity of real-world environments.
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Figure 1: System architecture of the DeepSeek LLM-
powered drone navigation framework. The system forms a
closed loop with the LLM Flight Assistant making naviga-
tion decisions based on sensor data, which is then executed
by the drone controller within the simulation environment.

The drone contains: 1) a simulated GPS sensor, which
provides position data with configurable noise; 2) LiDAR,

which measures distances in multiple directions for obstacle
detection; 3) a weather sensor that tracks wind speed, direc-
tion, temperature, and 4) an inertial measurement unit (IMU)
that measures velocity, orientation, and acceleration. These
sensors are programmed to behave as realistic sensor data.
Sensor data is processed for each sensor separately, adding
tailored noise, referred to as simulating sensor data noise
conditioning, to capture the sensor’s behavior in real-world
conditions (Fig. 1).

LLM-Based Flight Assistant
In this section we present the primary contribution of this
work: the LLM Flight Assistant context-aware system.

The LLM Flight assistant uses DeepSeek-v3, a pretrained
large language model with multi-modality processing capa-
bilities, to integrate contextually reason with space and exe-
cute contextually deep spatial reasoning. DeepSeek extracts
spatial multi-modal sensor data with numerical representa-
tions of the surroundings using narration, a highly optimized
prompt engineering technique. Its structure allows for the in-
tegration of intricate relations between obstacles, targets, as
well as meteorological conditions.

Given the current state of navigation, a number of criti-
cal DeepSeek functions are performed:1)DeepSeek merges
position data, obstacle data, and meteorological data into
a single holistic context. 2) Using θi, with i = 1, ..., 16
as the upper bound, DeepSeek calculates additional scor-
ing heuristics based on navigation learned behavior as well
as deterministic ones. 3) DeepSeek allows for probabilistic
reasoning refinement across a number of competing navi-
gational hypotheses which leads to more fluid navigational
changes as conditions alter in real time unlike rule based sys-
tems. 4) Pretrained DeepSeek phenomenology provides ba-
sic concepts which enable generalization to new unbounded
obstacle to weather pattern configurations that were not pro-
grammed in.

LLM Integration
In this section, we describe the LLM based context-aware
Flight Assistant System. Let D = {θ1, θ2, . . . , θ16} be the
possible set of navigation directions with θi = 2πi

16 , i ∈
{0, 1, . . . , 15}, p̄ ∈ R2 is the position vector, t̄ ∈ R2 is
the target vector, Ω = {O1, O2, . . . , Om} represents the ob-
stacles set, and W = {ws, wd} is the weather conditions.
In particular, ws and wd denote wind speed and direction,
respectively.

For the context embedding function defined by a context
embedding ΨDS, which assigns a context to raw environ-
mental data as rich contextual representation, it holds that:

ΨDS : (Q)→ C ∈ Rd (1)

where Q = ξ(p̄, t̄,Ω,W) describes the prompt encapsu-
lated within the sensor data, and C encodes the contextual
embedding within d space. This embedding represents the d
dimensional subspace illustrating the relationships between
the spatial elements as opposed to rule-based approaches
which rely on fixed network.”



The navigation choice is characterized by the direction
score function Si for each θi as follows:

Si = ωo ·Oi
s + ωm ·M i

s + ωw ·W i
s (2)

where ωo = 0.4, ωm = 0.4, and ωw = 0.2 are pri-
ority weights for obstacle avoidance, mission completion
and weather adaptation, respectively. Each scoring compo-
nent is dependent on the context embedding C produced by
DeepSeek aggregation.

DeepSeek boosts obstacle avoidance by crafting an obsta-
cle risk modifier γi

O which mediates risk more powerfully
than simplistic distance measures:

Oi
s = γi

O ·max

(
1− dimin

ds
, ϵ

)
(3)

Where dimin = minO∈Ω d(O, p̄, θi) is the distance to the
nearest obstacle, ds is the safety margin and ϵ = 0.1 is a
score floor. DeepSeek modifier γi

O from 0.5 to 1.5 depend-
ing on: 1) Obstacle distribution in the viewing direction θi,
2) Past collision history for these arrangements, 3) Obstacle
collision course prediction in real time and 4) other aids for
screening obstructions from the environment.

Formally, γi
O is computed through the function ΓO which

utilizes contextual understanding of DeepSeek θi, C.

γi
O = ΓO(θi, C) (4)

Which applies maximum softmax scaling designed for as-
sessing directional risk within deep learning systems.

DeepSeek enhances the mission progress assessment by
adding a modifier in context of mission γi

M:

M i
s = γi

M ∗
t̄− p̄

|t̄− p̄|
∗ ū(θi) (5)

Where θi is the unit vector in direction θi. This term mea-
sures the alignment of the target’s direction concerning the
path to the target. The DeepSeek modifier γi

M varies between
0.7 and 1.3 and takes into account: 1) Mission priority lev-
els (e.g., time-critical versus energy-efficient), 2) Viability of
alternative paths, 3) Intermediate-waitpoint considerations,
and/or 4) Long-term trajectory optimization. DeepSeek cal-
culates this modifier using the following equation:

γi
M = ΓM(θi, C) (6)

Incorporating weather impacts, deep seek integrates mod-
ifier βi

W to assess the weather adaptation score, demonstrat-
ing DeepSeek’s environmental understanding:

W i
s = γi

W(1− ws

wmax
| cos(θi − wd)|) (7)

Equation 5 combines the base term βi
W = ΓW(θi, C) to-

gether with wind speed and direction impacts where γi
W

varies from 0.6 to 1.4 due to: 1) Existing microclimate vari-
ations, 2) Wind field forecasting from configura terrain fea-
tures, 3) Previous wind characteristics in the region, or 4)
Safety margin around weather elements.

DeepSeek applies a probabilistic approach to choosing di-
rections using a softmax temperature parameter τ = Γτ (C):

P i =
exp(Si/τ)∑

θj∈D exp(Sj/τ)
(8)

The direction choice is optimized as follows:

θ∗ = argmax
θi∈D

P i (9)

The temperature parameter τ is dynamically set by
DeepSeek based on environmental uncertainty, with greater
values leading to more exploration in ‘fuzzier’ conditions.
Using DeepSeek’s confidence assessment, the rotation ve-
locity is:

v∗ = vmax ·
(
0.5 + 0.5 · Sθ∗ −minj S

j

maxj Sj −minj Sj

)
· γV (10)

where γV = ΓV(C) is the velocity modifier for DeepSeek
ranging from 0.6 to 1.2. This consideration is based on:
1) Overall navigation confidence, 2) Evaluation of environ-
mental complexity, 3) Sudden change detection, and 4) En-
ergy efficiency measures.

The entire navigation process can be summarized in a sin-
gle equation:

ΦDS : (p̄, t̄,Ω,W)→ (θ∗, v∗) (11)

This approach allows the drone to navigate complex,
dynamic environments with human-like adaptability while
maintaining computational efficiency required for real-time
operation. The complete algorithm is described in Algo-
rithm 1.



Algorithm 1: DeepSeek-Enhanced Drone Navigation

1: function ΦDS(p̄, t̄, Ω,W)
2: D ← {θ1, θ2, . . . , θ16} | θi = 2πi

16 , i ∈
{0, 1, . . . , 15}

3: Q ← ξ(p̄, t̄,Ω,W)
4: C ← ΨDS(Q)
5: for all θi ∈ D do
6: γi

O ← ΓO(θi, C)
7: γi

M ← ΓM(θi, C)
8: γi

W ← ΓW(θi, C)
9: end for

10: τ ← Γτ (C)
11: γV ← ΓV(C)
12: for all θi ∈ D do
13: dimin ← minO∈Ω d(O, p̄, θi)

14: Oi
s ← γi

O ·max(1− di
min

ds
, ϵ)

15: M i
s ← γi

M ·
t̄−p̄
|t̄−p̄| · u⃗(θi)

16: W i
s ← γi

W · (1− ws

wmax
· | cos(θi − wd)|)

17: Si ← ωo ·Oi
s + ωm ·M i

s + ωw ·W i
s

18: end for
19: for all θi ∈ D do
20: P i ← exp(Si/τ)∑

θj∈D exp(Sj/τ)

21: end for
22: θ∗ ← argmaxθi∈D P i

23: v∗ ← vmax · (0.5 + 0.5 · Sθ∗−minj Sj

maxj Sj−minj Sj ) · γV

24: return (θ∗, v∗)
25: end function

where ΦDS corresponds to the LLM(DeepSeek) enhanced
navigation function, D is the collection of 16 discrete nav-
igation directions, and ξ is the function that translates the
sensor information into prompts. For DeepSeek, ΨDS defines
the processing of natural language prompt Q, while C is the
context embedding produced by DeepSeek. The functions
that retrieve incrementing direction modifiers, ΓO, ΓM, and
ΓW, apply to specific boundaries. Γτ and ΓV retrieve global
parameters. DeepSeek’s modifiers for γi

O, mission adapta-
tion γi

M, and weather modification γi
W perform for obsta-

cle avoidance. Also, τ represents the temperature parame-
ter modulating exploration versus exploitation control, pro-
tagonist modifier γV adjusts velocity under wavering con-
fidence, and u⃗(θi) denotes the unit vector for θi direction.
Minimum score of an obstacle heuristics ϵ = 0.1. Priority
weights ωo = 0.4, ωm = 0.4, ωw = 0.2. Optimal direction
and velocity are specified θ∗, v∗.

The main benefit is in the function composition
ΦDS = (argmaxθi P

i, v∗) where P i comes from context-
augmented scoring. This enables the algorithm to exploit
sophisticated statistical dependencies present in the environ-
ment without needing explicit bounded functions describing
every possible quantitative model of the system. The result
is a navigation system that preserves the formalism of tra-
ditional approaches while augmenting it with the power of
contextual reasoning in high-dimensional spaces.

Figure 2: Simulation result of LLM-based drone navigation
with adaptive path planning. The blue curve tracks the tra-
jectory computed by the LLM, which illustrates proficient
navigation skills by maneuvering through obstacles. The tra-
jectory has discrete turns as the movement was only allowed
in 16 directions for simplicity.

Experimental Results
For simulation, six scenarios were considered in order to
evaluate the performance of the LLM Flight Assistant. These
scenarios are described in Table 1. The Simple Environment
(SE) was made up of 8 static obstacles, static winds of 1.0
m/s, and no moving obstacles. The wind speed increased
to a moderate 3.0 m/s, along with the addition of 12 static
obstacles within the environment in the Moderate Environ-
ment (ME), again, without any moving obstacles. The Com-
plex Environment (CE) added even more difficulties to the
system having 16 static obstacles alongside strong winds of
5.0 m/s. The Dynamic Environment (DE) introduced mo-
bility into the environment with 13 static obstacles, mod-
erate winds of 3.0 m/s, and the addition of 3 moving ob-
stacles. The High Movement Environment 1 (HME1) kept
the number of static obstacles at 13, low winds of 2.0 m/s,
but increased the number of moving obstacles to 10. Lastly,
the High Movement Environment 2 (HME2) represented the
most difficult scenario with 13 static obstacles, strong winds
of 5.0 m/s, and 13 moving obstacles. Each scenario is simu-
lated 100 times to collect statistically significant amount of
data on performance metrics such as path efficiency, comple-
tion time, and success rate. Fig. 2 presents successful simu-
lation results of target tracking under CE (complex environ-
ment).

Trajectory tracking results for Complex Environment
(CE) are presented in Fig. 2

Fligth path efficiency relies on challenge. There is an in-
verse correlation between complexity of the environment
and path efficiency driven along the path (Fig. 3). This is



Table 1: Test Environment Configurations

Environment Static Wind Moving
Type Obstacles (m/s) Obstacles
Simple (SE) 8 1.0 0
Moderate (ME) 12 3.0 0
Complex (CE) 16 5.0 0
Dynamic (DE) 13 3.0 3
High Movement 1 (HME1) 13 2.0 10
High Movement 2 (HME2) 13 5.0 13

Figure 3: Path efficiency across different scenarios (defined
as the ratio of a direct distance to the actual travel distance).

maintained even as scenario complexity is increased by the
addition of obstacles and wind. The Simple Environment
maintained the highest efficiency at 0.91 while the High
Movement Environment 2 (HME2) efficiency was 0.60. The
reason behind this lack of efficiency is because of the cir-
cumstantial need of the drone to take indirect routes due to
increased obstacles, stronger winds, and a higher number of
mobile obstacles. It is also noted that even with the increase
in scenario complexity, the systems maintained reasonable
efficiency until high wind speeds were coupled with a large
number of moving obstacles.

In the similar manner, the average completion time shows
inverse correlation with path efficiency for all the scenar-
ios ( Fig. 4). In the Simple Environment, the average com-
pletion time was 24.73 seconds, while the High Movement
Environment 2 (HME2) was 40.48 seconds. This marks a
63.7% increase in completion time from the simplest to the
most complex scenario. It is clear that the increase in envi-
ronmental complexity has a significant effect on the mission
duration. The shape of the increase in completion time, par-
ticularly in HME2 (High Movement Environment 2), is in-
dicative of non-linear change which suggests that high wind
speed in combination with many moving obstacles results in
additional difficulties for the navigation system.

The mission success rate shows a steady decline as
the complexity of the environment increases (Fig. 5). The
recorded success rates for different environments are shown
in Fig. 5. This finding suggests that the drone’s naviga-
tion system performs better under moderately dynamic chal-
lenges in comparison to higher levels of static complexity.

The results show that the LLM-based Flight Assistant is

Figure 4: Average mission completion time across different
scenarios.

Figure 5: Success rate of the DeepSeek LLM-powered nav-
igation system in various scenario complexities.

effective in different navigation contexts. Its basic perfor-
mance strategies tend to fall apart with increasing levels of
complexity. Both static complexity (number of obstacles and
wind speed) and dynamic complexity (moving obstacles)
impact performance, but it is the combination of the two in
High Movement Environment 2 that seems to be the most
difficult for the drone navigation system to deal with.

The non-linear reduction in performance metrics suggests
there are limits to how much complexity of the environment
can be introduced without degradation of service, which in-
dicates exceptional potential for optimization in the algo-
rithm’s path planning priorities using reinforcement learn-
ing.

Conclusion
This paper presents an autonomous drone navigation using
a large language model (LLM)-based (DeepSeek) context-
aware algorithm. The proposed approach contains high-level
reasoning with LLMs together with lower-level data pro-
cessing to navigate through complex and highly dynamic en-
vironments. Simulations in six scenarios showed that LLM
(DeepSeek)-powered navigation performed well for sim-



ple environments with 94% success rate. However, the suc-
cess rate has an inverse correlation with the complexity of
the scenarios, which means that the success rate decreases
with the increased complexity level. Moreover, the results
indicate that the algorithm finds a good balance between
completing missions in bad weather and avoiding obstacles
in medium-complexity environments. These results high-
light that LLMs are useful as high-level planners for au-
tonomous systems, especially for context-aware drone nav-
igation, which can be used for missions where the environ-
ment is dynamic and changing all the time.
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2016. RAFCON: A graphical tool for engineering com-
plex, robotic tasks. In 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 3283–3290.
IEEE.
Codevilla, F.; Miiller, M.; López, A.; Koltun, V.; and Doso-
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