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Abstract

Convolutional Neural Networks (CNNs) have achieved
remarkable success in computer vision tasks; however,
they often experience substantial performance degra-
dation when confronted with real-world corruptions
such as noise, compression artifacts, and lighting vari-
ations. The original push–pull CNN (PP-CNN) archi-
tecture addresses this challenge by employing a bio-
logically inspired mechanism that contrasts local exci-
tatory (push) and broader inhibitory (pull) responses
to suppress noise. In this work, we enhance the robust-
ness of PP-CNN through three key modifications: (1)
removing the half-wave rectification constraint to enable
more expressive interactions between push and pull sig-
nals, allowing for richer linear feature enhancement; (2)
introducing a dynamic channel attention mechanism
that adaptively recalibrates feature responses by am-
plifying discriminative signals and suppressing noise-
dominated channels; and (3) designing a multi-scale
push–pull (MSPP) framework that searches for pat-
tern consistency across multiple spatial resolutions, re-
inforcing the model’s ability to generalize under cor-
ruptions at varying scales. Our proposed enhancements
introduce a stronger inductive bias toward learning
scale-consistent features—a fundamental property of
natural images that remains stable even under corrup-
tion—without requiring corruption-specific data aug-
mentation. Comprehensive evaluations on the CIFAR-
10-C benchmark demonstrate that the enhanced PP-
CNN achieves improvements in robustness across di-
verse corruption types while maintaining competitive
accuracy on clean data. Notably, the multi-scale vari-
ant delivers the best trade-off between robustness and
cleandata performance, demonstrating the effectiveness
of exploitingmulti-scale feature consistency for general-
ization to unseen common image corruptions.

Introduction
Convolutional Neural Networks (CNNs) have demon-
strated remarkable success across a broad range of
computer vision tasks, including image classifica-
tion, object detection, and semantic segmentation.
However, their performance deteriorates significantly
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when exposed to real-world input corruptions such
as noise, compression artifacts, and lighting variations
(Hendrycks and Dietterich 2019). In practical settings,
natural images are frequently affected by environmen-
tal factors like low lighting, motion blur, and lossy
compression, which introduce subtle distortions that
can mislead CNN-based models. Despite the fact that
natural images often exhibit consistent patterns such
as edges and textures across different spatial scales,
CNNs struggle to leverage this intrinsic property to
separate meaningful signals from local noise. Geirhos
et al. (2017) experimentally demonstrated that humans
consistently outperform state-of-the-art CNNs in clas-
sifying corrupted images, highlighting the limitations
of existing CNNmodels in handling natural image cor-
ruptions.

Traditional CNNs are designed to extract hierarchi-
cal feature representations using local receptive fields
and spatial pooling.While effective on clean data, these
operations are highly sensitive to localized noise and
distortions because they lack an explicit mechanism to
distinguish between genuine patterns and noise-based
activations. Existing regularization techniques such as
data augmentation and adversarial training attempt to
mitigate this sensitivity by exposing models to syn-
thetic noise and transformations. However, these ap-
proaches are computationally expensive and may not
generalize well to unseen corruption types or real-
world noise patterns.

The push–pull CNN(PP-CNN) architecture (Strisci-
uglio, Lopez-Antequera, and Petkov 2020) was intro-
duced to address these challenges by drawing inspira-
tion from biological vision systems. Human visual pro-
cessing is known to employ a mechanism where local
excitatory (push) responses are balanced by broader
inhibitory (pull) responses to enhance contrast and
suppress noise. The original PP-CNNmodels this pro-
cess using two convolutional operations with kernels
of different sizes and opposite polarities. The push ker-
nel extracts local high-frequency patterns, while the
pull kernel captures broader contextual information to
counteract noise and background activations. The out-
put is computed by combining these two responses af-
ter applying half-wave rectification.



While the baseline push–pull mechanism demon-
strated improved robustness to noise and distortions, it
has several limitations. First, applying ReLU-based rec-
tification to the push and pull responses before com-
bining them limits the model’s ability to fully exploit
the contrast between local and surround signals. Sec-
ond, the original PP-CNNprocesses spatial features in-
dependently within each channel, ignoring the contex-
tual relationships between different feature channels.
Third, the push–pull mechanism operates at a fixed
spatial scale, limiting its ability to handle corruptions
that occur at different scales.

In this work, we propose three enhancements to the
original PP-CNN to improve robustness against com-
mon corruptions without compromising clean data
performance.

First, we remove half-wave rectification from
push–pull responses, converting the mechanism into a
linear filter that preserves both positive and negative
contrasts. This sharpening effect amplifies structured
patterns while suppressing noise.

Second, we incorporate a Squeeze-and-Excitation-
inspired channel attention module to adaptively
reweight push responses. By emphasizing informative
channels and suppressing noise, this improves feature
selectivity under corruption.

Third, we extend the architecture to a multi-scale
push–pull framework by introducing pull kernels of
varying sizes. These multi-scale features, concatenated
and refined via channel attention and a 1 × 1 convo-
lution, enhance robustness across spatial resolutions
while maintaining efficiency.

Related Works
CNNs have become the foundation of modern com-
puter vision, enabling state-of-the-art performance in
image classification, object detection, semantic seg-
mentation, and other vision tasks. Their hierarchical
feature extraction enables learning of spatial and se-
mantic patterns directly from raw data. However, they
remain susceptible to corruptions such as noise, blur,
occlusions, and contrast variations, which hinder gen-
eralization and degrade real-world performance.

Robustness of CNNs
CNNshave demonstrated remarkable success on large-
scale datasets such as ImageNet (Deng et al. 2009) and
CIFAR (Krizhevsky, Hinton et al. 2009), but their vul-
nerability to input perturbations has remained a ma-
jor challenge.Hendrycks andDietterich (2019) showed
that CNNs exhibit significant performance degrada-
tion when evaluated on corrupted versions of Im-
ageNet and CIFAR-10. Their study introduced the
CIFAR-10-C and ImageNet-C datasets, which include
common corruptions such as Gaussian noise, motion
blur, and pixelation, to evaluate the robustness of CNN
models under real-world perturbations. The results
highlighted that even high-performingmodels, such as

ResNet (He et al. 2016) and DenseNet (Huang et al.
2017), experience a sharp drop in accuracy under these
perturbations, indicating that standard CNN architec-
tures lack intrinsic robustness to environmental vari-
ability.

Geirhos et al. (2017) demonstrated that CNNs tend
to overfit to texture information rather than shape,
which makes them highly sensitive to style changes
and noise. This texture bias reduces generalization ca-
pacity, particularly when the model encounters data
that deviates from the clean training distribution. Fur-
ther, Ilyas et al. (2019) argued that adversarial vulner-
ability stems from the presence of ”non-robust” but
predictive features in the training data, which CNNs
exploit to maximize accuracy. These findings suggest
that the fundamental learning strategy of CNNs pri-
oritizes texture-based patterns over more meaningful
shape-based features, making them inherently fragile
under perturbations.

Several strategies have been proposed to improve
CNN robustness:
Data Augmentation Data augmentation is one of the
earliest and most widely used methods to improve
CNN generalization. Techniques such as random crop-
ping, flipping, rotation, color jittering, and cutout aug-
mentation increase the diversity of the training set,
helping the model learn invariance to minor perturba-
tions (Krizhevsky, Sutskever, and Hinton 2012)(Wang
et al. 2021a). More sophisticated augmentation strate-
gies, such as AutoAugment (Cubuk et al. 2019)(Wang
et al. 2021b) and RandAugment (Cubuk et al. 2020),
automate the search for optimal augmentation policies,
leading to further improvements in generalization.
Adversarial Training Adversarial training involves
generating adversarial examples by perturbing the in-
put data and training the model to resist these at-
tacks. Goodfellow et al. introduced the Fast Gradient
Sign Method (FGSM) to create adversarial examples
by adding small, structured perturbations to the in-
put image (Goodfellow, Shlens, and Szegedy 2015).
Madry et al. proposed a more robust adversarial train-
ing method using projected gradient descent (PGD),
which creates stronger adversarial examples (Madry
et al. 2018)(Wang, Li, and Zhang 2024). Adversarial
training improves robustness against specific attacks
but often leads to a drop in clean accuracy and in-
creased computational cost.
Regularization and Normalization Batch normal-
ization (Ioffe and Szegedy 2015) and dropout (Srivas-
tava et al. 2014) have been shown to improve gener-
alization by reducing overfitting and stabilizing the
learning process. Label smoothing (Szegedy et al.
2016) reduces overconfidence in predictions by encour-
aging the model to produce more calibrated probabili-
ties. Weight decay and mixup (Zhang et al. 2017) also
help improve robustness by encouraging smoother de-
cision boundaries.



Push-Pull Design
Biological vision systems process visual stimuli
through a balance of excitatory and inhibitory
responses, a mechanism known as push–pull inhibi-
tion. Push–pull inhibition enhances the signal-to-noise
ratio by reinforcing relevant patterns through excita-
tory responses and suppressing irrelevant background
information through inhibitory feedback. Petkov and
Westenberg (2003) introduced a computational model
of push–pull inhibition for contour detection, demon-
strating that this mechanism improves robustness to
noise and cluttered backgrounds. Inspired by this
work, Strisciuglio et al. (2020) integrated push–pull
inhibition into CNNs by introducing a push–pull
layer composed of two convolutional kernels. The
push kernel models excitatory responses, while the
pull kernel models inhibitory responses. The network
response is computed as the difference between these
two kernels.

Attention Mechanisms in CNNs
Attentionmechanisms have revolutionized deep learn-
ing by enabling models to selectively focus on task-
relevant featureswhile ignoring irrelevant patterns. At-
tention was first introduced in natural language pro-
cessing with the Transformer model (Vaswani et al.
2017), which used self-attention to model long-range
dependencies in sequential data. The success of Trans-
formersmotivated the adaptation of attention to CNNs
for computer vision tasks. Hu et al. (2018) introduced
SE networks, which compute channel-wise attention
through global average pooling and a fully connected
gating mechanism. SE networks improved classifica-
tion accuracy on ImageNet with minimal computa-
tional cost. Woo et al. (2018) proposed CBAM, which
combines spatial and channel-wise attention to refine
feature maps. CBAM improves both object detection
and classification but increases complexity due to ad-
ditional convolutional layers. Wang et al. (2020) pro-
posed ECA to reduce the computational cost of atten-
tion by using a 1D convolution for channel attention.
ECA achieves strong performance while maintaining
efficiency.

Methodology
We propose three key modifications to the push–pull
CNN (PP-CNN) architecture to improve robustness
against image common image corruptions without re-
lying on targeted data augmentation for each type of
distortion. These modifications include: (1) removing
the activation constraint to enable more expressive in-
teractions between push and pull signals, (2) introduc-
ing a channel attention mechanism to dynamically re-
calibrate feature maps based on global channel depen-
dencies, and (3) extending the architecture to incorpo-
rate pull activations at multiple scales. These enhance-
ments reinforce the architectural bias of push–pull lay-
ers, improving the network’s ability to handle common

corruptions in a more generalizable manner.

Revisiting the Push–Pull CNN
A push–pull CNN layer employs two sets of convolu-
tional kernels: a set of push kernels Kp and a corre-
sponding set of pull kernelsKq derived from the push
kernels. The pull kernels are obtained by negating the
push kernels and applying bilinear upsampling to in-
crease their spatial extent, thereby creating a comple-
mentary pair of feature extraction operations.

Given an input image X ∈ RH′×W ′×C′ , the push re-
sponse is computed as: Up = X ⊛ Kp, where ⊛ de-
notes the convolution operator, and Up ∈ RH×W×C

represents the feature map produced by the push ker-
nels. For a specific channel c, the push response is com-
puted as: uc

p = X ⊛ kc
p, where kc

p is the c-th 2D push
kernel, and uc

p ∈ RH×W represents the corresponding
responsemap. Similarly, the pull response is computed
using the pull kernelsKq as U q = X ⊛Kq .
The baseline push–pull layer applied ReLU activa-

tion to both push and pull responses, limiting the
model’s ability to capture fine-grained variations. We
propose removing this rectification step and comput-
ing the final output with a raw unrectified subtraction:

U = Up − α ·U q (1)
where α is a scaling factor that can be fixed or learned
during training. This modification enhances the con-
trast enhancement effect by reinforcing consistent pat-
terns that are repeated across spatial regions. When
a pattern is detected by both push and pull kernels
(with opposite polarity), the subtraction operation am-
plifies the response, effectively sharpening the feature
map. The absence of rectification allows more nuanced
responses, enabling the network to preserve fine de-
tails and subtle variations thatwould otherwise be sup-
pressed by ReLU.

Dynamic Channel Attention for Cross-Channel
Interaction
To improve feature selectivity and aid with noisy fea-
ture suppression, we introduce a channel attention
mechanism that recalibrates the push response Up

based on global cross-channel interaction. Inspired by
the SE network, the attention mechanism allows the
network to adaptively weight different channels based
on their contribution to the final output.
Squeeze Operation We compute a channel-wise
descriptor by averaging each push response map:
zc =

1
H×W

∑H
i=1

∑W
j=1 u

c
p(i, j), where zc represents the

global average value of the c-th push response. This
generates a channel descriptor z ∈ RC that captures
the overall activation strength across all feature chan-
nels.
Excitation Operation The channel descriptor is
passed through a fully connected gating mechanism



Figure 1: PP-CNN layer with dynamic attention

to compute the importance weights of the chan-
nel. Specifically, we use a two-layer network with a
bottleneck dimensionality reduction to reduce com-
putational complexity and improve generalization
as : w = σ(W 2(δ(W 1z))), where W 1 ∈ RC/r×C

and W 2 ∈ RC×C/r are the weight matrices, r is the
reduction ratio, δ denotes the ReLU activation, and σ
represents the sigmoid function. The final push-pull
response with channel attention is computed as:

U = U ′
p − α ·U q, U ′

p = Up ⊙w, (2)
where ⊙ represents channel-wise multiplication of uc

p

and attention-weights w.
This attention mechanism naturally enhances ro-

bustness to corruptions by dynamically prioritizing
channels that contain stable, semantically relevant fea-
tures. When input images are corrupted by noise or
other distortions, different channels are affected to
varying degrees. Channels that capture fundamental
structural information tend to maintain consistent acti-
vation patterns even under corruption, while channels
sensitive to fine details or textures become less reliable.

Utilizing Multi-Scale Pull Activations
To enhance scale invariance, we extend the push–pull
mechanism to incorporate pull activations at multiple
spatial scales. Given a push kernel Kp, we generate
a set of pull kernels {K1

q,K
2
q, . . . ,K

S
q } at S different

scales by bilinear upsampling:
U s

q = X ⊛ (−Ks
q) (3)

where s denotes the scale index. For each scale, the
push–pull response is computed as:

V s = Up − α ·U s
q (4)

The multi-scale features are concatenated along the
channel dimension : U concat = [Up,V

1,V 2, . . . ,V S ],

Figure 2: PP-CNN layer utilizing pull kernels derived
from push kernels at multiple scales

and then re-calibrated with channel attention similarly
as in Eq. (2) : U ′

concat = U concat ⊙ w. To reduce di-
mensionality and limit computational complexity, the
concatenated feature map is processed through a 1× 1
convolution layer:

Ufinal = Conv1×1(U
′
concat) (5)

Fact that most of these channels have redundant infor-
mation, also makes it a natural choice. This multi-scale
approach allows the network to account for corruptions
occurring across different receptive field sizes.

Experimental Results and Discussion
The baseline architectures used in our experiments are
based on ResNet-20 and DenseNet-40 (with a growth
rate of 12). To evaluate the impact of the proposed
modifications, we replaced approximately one-third of
the top CNN layers (Block 1) with push–pull layers
in both architectures. The rationale behind this de-
sign choice is discussed in detail in Ablation studies sec-
tion below. All models were trained on non-corrupted
CIFAR-10 images using standard data augmentation
techniques, including random cropping and horizon-
tal flipping. Training was conducted for 120 epochs
using a batch size of 2048. The optimization was per-
formed using stochastic gradient descent (SGD) with
momentum. We evaluated the baseline and our pro-
posed enhanced configurations on both clean CIFAR-
10 and CIFAR-10-C. CIFAR-10-C introduces 19 differ-
ent corruption types, including noise, blur, weather ef-
fects, and digital distortions, each applied at five lev-
els of severity. The evaluation aimed to measure the
model’s accuracy and robustness across different cor-
ruption types and to quantify the trade-off between ro-
bustness and clean data performance.



Noise Type ResNet-20 DenseNet-40

PP
ReLU
(base-
line)

PP +
GELU
(new
base-
line)

PP attn
(ours)

PP attn
+
GELU
(ours)

Mult.
Scale PP
attn +
GELU
(ours)

PP
ReLU
(base-
line)

PP +
GELU
(new
base-
line)

PP attn
(ours)

PP attn
+
GELU
(ours)

Mult.
Scale PP
attn +
GELU
(ours)

Clean CIFAR-10 82.05 82.63 79.51 80.00 83.66 79.52 78.62 74.23 75.2 79.04
Gaussian Noise 57.06 62.9 65.90 63.28 56.85 52.15 56.36 62.26 64.12 56.98
Shot Noise 62.83 67.82 69.58 67.48 63.90 57.86 61.54 66.02 67.32 62.87
Impulse Noise 57.99 62.92 59.65 57.02 57.61 56.38 57.15 57.28 58.41 58.33
Speckle Noise 63.84 68.33 69.97 67.74 64.96 58.90 61.91 65.86 67.41 63.30
Avg Noise Acc 60.43 65.49 66.27 65.43 60.54 56.32 59.24 62.85 64.35 60.92
Gaussian Blur 67.75 69.03 75.21 76.05 73.32 62.29 62.70 69.48 70.08 63.63
Defocus Blur 72.62 73.53 77.06 77.86 76.82 67.84 67.72 71.38 71.92 68.50
Glass Blur 72.04 72.53 75.77 76.66 74.55 65.54 67.49 71.37 72.05 69.66
Motion Blur 67.99 68.61 72.99 73.43 71.71 61.97 62.69 67.56 68.22 63.74
Zoom Blur 69.10 70.86 75.92 76.42 74.48 63.58 63.91 69.68 70.51 65.24
Avg Blur Acc 69.9 70.91 75.39 71.34 74.17 64.66 64.9 69.89 70.55 66.15
Snow 72.77 72.25 73.15 74.08 75.34 67.47 67.79 67.44 67.48 69.23
Frost 70.73 70.45 71.18 72.19 73.95 64.43 65.26 64.46 63.60 66.12
Fog 66.65 64.88 62.06 63.91 68.16 62.09 57.77 55.08 55.91 60.17
Brightness 79.41 78.89 76.24 76.37 79.83 75.42 74.05 70.45 69.83 74.19
Contrast 49.93 49.74 46.88 49.17 51.32 46.49 43.62 42.17 43.28 44.17
Elastic Transform 75.03 75.4 75.87 76.62 77.49 70.77 70.09 70.83 71.63 71.13
Pixelate 80.6 80.45 78.82 79.65 81.81 74.71 75.59 73.69 74.61 77.05
JPEG Compression 75.07 76.79 73.35 73.49 76.08 71.68 72.65 69.29 69.37 72.39
Spatter 76.80 77.11 75.09 76.11 78.41 73.60 72.57 70.48 70.96 74.31
Saturate 72.39 73.45 68.94 68.78 72.96 69.20 66.96 61.10 61.45 66.76
Avg Corruption Acc 68.98 70.31 70.72 70.86 70.97 64.40 64.62 65.57 66.20 65.67

Table 1: Evaluating different push-pull layers on CIFAR-10 and CIFAR-10-C for ResNet-20 and DenseNet-40. For readability
purpose, the best results are in bold and the second best results are underlined.

Model Comparison for Noise Robustness

Table 1 shows the detailed classification accuracy for
each corruption type on the CIFAR-10-C dataset. The
proposed variants consistently outperformed the base-
line PP-CNN (PP ReLU) across most corruption types.
The evaluated variants include: push–pull CNN with
unrectified operations and attention (PP attn), PP-
CNN with unrectified operations and attention com-
bined with GELU activation (PP attn + GELU), and
MSPP CNN with unrectified operations and attention
(Mult. Scale PP attn + GELU).

A key modification in all attention-based variants
is the direct linear subtraction between push and
pull responses without rectification. Unlike the origi-
nal PP-CNN, which applies ReLU to both responses,
this approach retains both positive and negative sig-
nals, allowing more effective contrast sharpening and
improved feature extraction. For a fair comparison,
the activation functions in all models were replaced
with GELU (marked by + GELU), as it demonstrated
slightly better performance than ReLU in our prelimi-
nary experiments.

Incorporating channel attention consistently im-
proved performance across the majority of corrup-

tion types. The proposed models showed particularly
strong performance on Noise and Blur corruptions,
where attention-based feature recalibration helped to
suppress irrelevant patterns and amplify discrimina-
tive features. However, for certain corruptions, such
as Saturate, Fog, and JPEG Compression, the baseline
push–pull configuration outperformed the enhanced
variants, especially in the DenseNet-40 architecture.
This suggests that some types of image distortionsmay
benefit more from the baseline push–pull’s suppres-
sion mechanism.

Integrating attention improved robustness to cor-
rupted inputs but introduced a slight reduction in ac-
curacy on clean CIFAR-10 images in most configura-
tions. Nevertheless, the Mult. Scale PP attn + GELU
configuration consistently achieved either compara-
ble or superior performance in almost all corruption
types while maintaining competitive accuracy on clean
CIFAR-10. This balance between robustness and accu-
racy is examined further in the next section.

Multi-Scale Push–Pull (MSPP)
Our modifications involving unrectified push–pull op-
eration and channel attention strengthen the model’s
inherent bias toward feature sharpening. This sharpen-



a) PP ReLU activations
(speckle-noise)

b) PP Attn activations
(clean image)

c) PP Attn activations
(speckle-noise)

Figure 3: First layer activation visualizations for PP ReLU (Baseline) and PP attn + GELU on ResNet-20. (a) PP ReLU (Baseline)
activations on speckle-noise corrupted horse image (misclassified as deer). (b) PP attn + GELU activations on clean horse image.
(c) PP attn + GELU activations on speckle-noise corrupted horse image (correctly classified). Blue and red borders indicate
channels with decreased and increased attention scores respectively under noise corruption.

ing effect enhances the model’s ability to handle noise
and blur corruptions by reinforcing consistent patterns
across scales, making it easier to distinguish meaning-
ful signals from noise. However, this same sharpen-
ing tendency can reduce performance on clean images
and certain corruption types, where excessive sharp-
ening may amplify irrelevant details and noise arti-
facts. To mitigate this trade-off, we propose a Multi-
Scale Push–Pull (MSPP) mechanism that preserves in-
formation from both the original and enhanced feature
maps. MSPP concatenates the original activation map
(push) with a set of sharpened activations generated
using pull kernels at multiple scales, as shown in Fig. 2.
This enables the push–pull layer to consider for corrup-
tions that can occur at different spatial scales while also
preserving fine-grained details of original push kernel
response necessary for accurate classification on clean
images.

Themulti-scale features are processed through a 1×1
convolution layer to reduce dimensionality and control
computational complexity. This dimensionality reduc-
tion is particularly effective because themulti-scale fea-
tures often contain redundant information, as they are
derived from the same push kernel at different scales.
By consolidating this information, the network can fo-
cus on themost relevant patternswhileminimizing the

computational burden.
Our approach is conceptually similar to the Incep-

tion architecture (Szegedy et al. 2016), which utilizes
feature extraction at multiple scales. However, it differs
in a critical aspect: instead of extracting different types
of features at varying scales, we enhance the same set
of features using inverse kernels (pull responses).

By combining multi-scale processing with channel
attention and unrectified push–pull operations, model
more resilient to real-world corruptions while preserv-
ing competitive accuracy on clean data.

Attention Visualization and Analysis
Figure 3 presents response map visualizations from
the first Push–Pull layer in ResNet-20. The base-
line Push–Pull model (Figure 3a) misclassifies a
noise-corrupted horse image as a deer, whereas the
Push–Pull-Attention model successfully identifies it.
This improvement stems from the attention mecha-
nism’s ability to dynamically adjust channel activations
based on their discriminative importance, thereby en-
hancing the network’s ability to focus on relevant pat-
terns while suppressing noise.

Figure 4 illustrates the channel-wise attention score
differences between the noisy and clean versions of the
same horse image, corrupted by speckle noise. Chan-



Noise Type ResNet-20 DenseNet-40
PP attn
(ALL)

PP attn
(Block 1)

PP attn +
GELU
(ALL)

PP attn +
GELU
(Block 1)

PP attn
(ALL)

PP attn
(Block 1)

PP attn +
GELU
(ALL)

PP attn +
GELU
(Block 1)

Clean CIFAR-10 76.48 79.51 77.64 80.00 76.15 74.23 76.96 75.2
Avg Noise Acc 68.86 66.27 64.84 65.43 66.55 62.85 53.12 64.35
Avg Blur Acc 73.07 75.39 73.9 71.34 72.15 69.89 72.46 70.55
Avg Corruption Acc 68.96 70.72 68.80 70.86 65.54 65.57 67.97 66.20

Table 2: Effect of swapping CNNs with PP-CNN on CIFAR-10 and CIFAR-10-C

Figure 4: Channel-wise attention score differences between
noisy and clean image activations. Blue bars indicate chan-
nels with decreased attention in the noisy image compared to
the clean image, while red bars show channelswith increased
attention.

nels are sorted by the magnitude of the attention score
difference, with blue bars indicating reduced attention
in the noisy condition and red bars indicating increased
attention. Notably, channels that receive reduced atten-
tion in the noisy image (e.g., channels 1, 6, and 10) ex-
hibit more blurred and less discriminative activations,
as seen in Figures 3b and 3c.

This analysis suggests that the attention mechanism
dynamically reallocates focus toward channels that
preserve stronger and more stable feature representa-
tions, even under noise corruption. Themechanism ap-
pears to prioritize channels with visually pronounced
activations while suppressing those where noise has
weakened the signal quality. This adaptive channel re-
weighting enables the network to retain robust perfor-
mance even under significant image distortions, effec-
tively enhancing themodel’s resilience to real-world in-
put variations.

Ablation Study
To assess the impact of replacing standard convolu-
tional layers with push–pull layers, we conducted an

Model
Variants
(PP attn)

# of
params

Clean
CIFAR-
10
Acc

Avg
Noise
Acc

Avg
Blur
Acc

CIFAR-
10-C
Acc

ResNet-20
SE Attn. 273510 80.00 65.43 71.34 70.86
SimAM 272474 80.54 71.00 72.92 70.5
DenseNet-40
SE Attn. 176962 75.2 64.35 70.55 66.2
SimAM 176122 74.47 61.95 69.95 65.35

Table 3: Effect of different attention mechanisms (SE and
SimAM)onCIFAR-10 andCIFAR-10-C, evaluated onResNet-
20 and DenseNet-40

ablation study by progressively substituting layers in
ResNet-20 and DenseNet-40. As shown in Table 2,
ResNet-20with push–pull layers integrated into the top
layers (marked as Block 1) demonstrated a significant
improvement in performance. In contrast, replacing all
convolutional layers with push–pull layers (marked as
ALL) resulted in only marginal gains in DenseNet-40.

These findings align with observations from Strisci-
uglio et al. (2020) that the initial layers of CNNs
are most vulnerable to corruptions in input image.
This makes them ideal candidates for the push–pull
mechanism’s sharpening effect which enhances con-
trast. Conversely, deeper layers process high-level, ab-
stract features that are less affected by noise, which ex-
plains the diminishing returns observed when replac-
ing deeper layers with push–pull convolutions. Addi-
tionally, each push–pull layer linearly increases com-
putational and memory costs for the computation of
pull activations and channel attention. This informed
our design choice to restrict push–pull layers to the top
layers, striking a balance between robustness gains and
computational efficiency.

We also examined the impact of different atten-
tion mechanisms by comparing SE attention with
parameter-free attention (SimAM). Both attention
mechanisms were evaluated on ResNet-20 and
DenseNet-40 architectures. As shown in Table 3, SE at-
tention consistently outperformed the parameter-free
variant across most metrics, including clean accuracy,
noise robustness, and blur robustness. These results
are consistent with our discussion on SE attention,



confirming that learnable channel recalibration plays a
critical role in improving feature discriminability and
overall robustness.

Conclusion
In this work, we introduced three key enhancements
to the PP-CNN architecture that significantly im-
proved its robustness to common image corruptions.
First, by removing the half-wave rectification from the
push–pull mechanism, we transformed it into a lin-
ear feature enhancement filter that more effectively
sharpens scale-consistent patterns. Second, the intro-
duction of a dynamic channel attention mechanism
enabled adaptive cross-channel interactions, allowing
the network to emphasize the most discriminative fea-
tures even under challenging corruption conditions.
Third, the multi-scale framework leveraged pull re-
sponses at different scales, enhancing the model’s abil-
ity to distinguish between consistent visual patterns
and noise-induced activations across varying spatial
resolutions. Experimental results on the CIFAR-10-
C dataset demonstrated that the enhanced architec-
ture substantially improved performance across awide
range of corruption types, particularly for noise and
blur. On the whole, the multi-scale approach, in par-
ticular, addressesed the typical robustness–accuracy
trade-off by improving performance on both clean and
corrupted data.
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