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Abstract

Deep learning models have excelled in tasks like image
recognition and autonomous systems but remain vulnerable
to adversarial attacks and spurious correlations, limiting their
reliability in real-world and safety-critical settings. To ad-
dress these challenges, we propose a novel framework that
leverages explainable Artificial Intelligence (XAI) to enhance
the robustness of Convolutional Neural Networks. Our ap-
proach integrates Grad-CAM insights into the model refine-
ment process, guiding feature masking to reduce reliance on
irrelevant or misleading features. We introduce three mask-
ing strategies: (1) binary masking to retain high-activation
regions, (2) Gaussian-blurred masking to preserve contex-
tual information while reducing noise, and (3) difference-
based masking to remove unstable features unique to the
baseline model. We evaluate these strategies against two com-
mon adversarial attack methods—Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD). Results
show that all three strategies improve FGSM accuracy, with
binary and difference-based masking providing consistent
gains across perturbation levels. Gaussian-blurred masking
delivers the highest improvement in PGD accuracy, partic-
ularly at higher perturbation strengths.

Introduction
Convolutional Neural Networks (CNNs) have achieved re-
markable success in various computer vision tasks, includ-
ing image classification, object detection, and segmentation
(Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016;
Redmon et al. 2016; Wang and Liang 2019; Wang and Li
2019). Despite their widespread adoption, CNNs are highly
susceptible to adversarial attacks, where small, often im-
perceptible perturbations to the input data can cause signif-
icant misclassifications (Szegedy et al. 2013; Goodfellow,
Shlens, and Szegedy 2015; Cui et al. 2024). This vulnera-
bility raises critical concerns about the reliability and secu-
rity of deep learning models, especially in high-stakes do-
mains such as autonomous driving, healthcare, and security
systems (Kurakin, Goodfellow, and Bengio 2018; Moosavi-
Dezfooli et al. 2017; Shi et al. 2020).

To mitigate adversarial threats, several defense strategies
have been proposed, including adversarial training (Madry
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et al. 2017; Waghela, Sen, and Rakshit 2024), input trans-
formation (Guo et al. 2017; Wang et al. 2021b; Nayyem,
Rakin, and Wang 2024), local linearization, symmetry en-
forcement, (Qin et al. 2019; Wang et al. 2024; Wang, Li, and
Zhang 2024; Wang, Ghimire, and Santosh 2024) and model
regularization (Ross and Doshi-Velez 2018). Among these
methods, adversarial training—where the model is trained
on adversarial examples—has been shown to be effective but
computationally expensive and prone to overfitting to spe-
cific attack types (Tsipras et al. 2019). Input transformation
techniques, such as image cropping, resizing, and blurring,
offer an alternative approach by reducing the impact of per-
turbations, but they often degrade clean accuracy (Xie et al.
2019).

Recently, explainability methods such as Grad-CAM
(Gradient-weighted Class Activation Mapping) (Selvaraju
et al. 2017) have emerged as powerful tools for interpreting
CNN decisions by identifying the most influential input re-
gions (Chakraborty et al. 2022; Zhang et al. 2025; van Zyl,
Ye, and Naidoo 2024). Grad-CAM provides a heatmap of
high-activation regions, offering insights into which features
the model relies on for prediction. While explainability tech-
niques have primarily been used for model interpretation
(Hassija et al. 2024; Wang et al. 2021a, 2020) and debugging
(Lin, Lee, and Celik 2021; Baniecki and Biecek 2024), there
is growing interest in leveraging them to enhance adversarial
robustness. For example, guided masking of vulnerable fea-
tures using Grad-CAM could enable the model to focus on
more stable and less attack-prone features, improving over-
all resilience to adversarial perturbations.

In this work, we propose an explainability-driven defense
strategy that employs Grad-CAM to guide feature mask-
ing as a mechanism for improving CNN robustness against
adversarial attacks. Specifically, we explore three mask-
ing strategies: (1) Binary feature masking based on high-
activation regions from Grad-CAM in a ResNet-50 model,
(2) Gaussian-blurred masking to maintain contextual in-
formation while reducing sensitivity to high-frequency per-
turbations, and (3) Difference-based masking that removes
features unique to the baseline model but absent in a
stronger ResNet-50 model. We evaluate the effectiveness of
these masking techniques against two well-established at-
tack methods—Fast Gradient Sign Method (FGSM) (Good-
fellow, Shlens, and Szegedy 2015) and Projected Gradient



Descent (PGD) (Madry et al. 2017; Villegas-Ch, Jaramillo-
Alcázar, and Luján-Mora 2024).

Our contributions can be summarized as follows:

• We propose a novel feature masking framework guided
by Grad-CAM to enhance CNN robustness against ad-
versarial attacks.

• We systematically compare three masking tech-
niques—binary, Gaussian-blurred, and difference-based
masking—highlighting their relative strengths under
different attack scenarios.

• We demonstrate that feature masking improves adversar-
ial robustness without requiring adversarial training, of-
fering a lightweight and scalable defense mechanism.

Related Works
The vulnerability of deep neural networks, particularly Con-
volutional Neural Networks (CNNs), to adversarial attacks
has been extensively studied in recent years. Adversarial
attacks involve crafting small perturbations to input data
that are imperceptible to humans but can significantly de-
grade the performance of CNNs. In this section, we re-
view key approaches for defending CNNs against adversar-
ial attacks, focusing on adversarial training, input transfor-
mation, model regularization, and explainability-guided de-
fense mechanisms.

Adversarial Training
Adversarial training is one of the most widely studied and
effective methods for improving adversarial robustness. In
this approach, a model is trained on adversarially perturbed
data to improve its ability to resist attacks. Goodfellow et
al. (Goodfellow, Shlens, and Szegedy 2015) proposed the
Fast Gradient Sign Method (FGSM) for generating adver-
sarial examples and demonstrated that adversarial training
could mitigate such attacks. Madry et al. (Madry et al. 2017)
introduced Projected Gradient Descent (PGD) and showed
that adversarial training with PGD-generated examples leads
to state-of-the-art robustness. However, adversarial training
is computationally expensive and can lead to overfitting on
specific types of attacks, reducing generalization to unseen
perturbations (Tsipras et al. 2019; Huang et al. 2020). Fur-
thermore, adversarial training often degrades the clean ac-
curacy of the model, creating a trade-off between robustness
and generalization (Zhang et al. 2019).

Input Transformation
Input transformation techniques aim to preprocess input data
in a way that disrupts adversarial perturbations while pre-
serving the underlying signal. Guo et al. (Guo et al. 2017)
proposed input transformations such as image cropping, re-
sizing, and JPEG compression to counter adversarial attacks.
Xie et al. (Xie et al. 2019) introduced feature denoising as a
preprocessing step to enhance model robustness. While in-
put transformation is lightweight and easy to implement, it
often reduces clean accuracy and may not generalize well
across different types of attacks (Wang et al. 2021c).

Model Regularization
Model regularization methods seek to enhance robustness by
modifying the loss function or training process to improve
the model’s sensitivity to perturbations. Ross and Doshi-
Velez (Ross and Doshi-Velez 2018)(Wang and Liang 2019)
proposed gradient-based input regularization, where the
model’s sensitivity to input perturbations is reduced by pe-
nalizing large gradients. Jakubovitz and Giryes (Jakubovitz
and Giryes 2018) introduced regularization terms based on
the Lipschitz constant to improve adversarial robustness.
While regularization-based approaches can enhance robust-
ness, they require careful tuning and often increase the com-
plexity of the training process.

Explainability-Guided Defenses
Explainability methods such as Grad-CAM (Gradient-
weighted Class Activation Mapping) (Selvaraju et al.
2017)(Nayyem, Rakin, and Wang 2024) have been widely
used to interpret CNN decisions by highlighting the most
influential input regions. In our work, we extend the idea
of explainability-guided defense by exploring three distinct
feature masking strategies based on Grad-CAM activations.
Unlike previous approaches, our method directly leverages
Grad-CAM insights to refine the model’s attention, improv-
ing robustness without requiring adversarial training. Fur-
thermore, we conduct a detailed comparison of the effec-
tiveness of each masking strategy against FGSM and PGD
attacks.

Methodology
To evaluate the impact of feature masking on adversar-
ial robustness, we propose a novel Grad-CAM-guided de-
fense framework that leverages explainability to refine the
model’s feature sensitivity. We investigate three distinct
feature masking strategies: (1) binary feature masking,
which retains only high-activation regions; (2) Gaussian-
blurred masking, which preserves contextual information
while suppressing irrelevant regions; and (3) difference-
based masking, which removes unstable features by com-
paring activations of a baseline model and a stronger refer-
ence model (ResNet-50).

Our approach is designed to selectively mask input fea-
tures, retrain the model on the masked datasets as illus-
trated in Figure 1, and then evaluate the resulting robust-
ness against adversarial attacks using FGSM and PGD. This
section details the Grad-CAM-based feature extraction and
masking strategies

Grad-CAM-Based Feature Extraction
Explainability methods such as Grad-CAM (Gradient-
weighted Class Activation Mapping) (Selvaraju et al. 2017)
provide a powerful way to visualize the contribution of in-
put features to a model’s predictions. Grad-CAM generates
a heatmap that highlights the most influential input regions
for a given class prediction. The core idea is to compute gra-
dients of the class score yc with respect to the feature maps
from the last convolutional layer to determine which regions
contribute most to the class decision.



Figure 1: Iterative process for Grad-CAM guided model refinement. The workflow begins with training (1) an initial baseline
model, followed by extracting feature importance through Grad-CAM analysis (2,3,4). Spurious dependencies in feature ac-
tivations are identified, leading to the application of three feature masking strategies: Binary Masking (5a), Gaussian Blurred
Feature Masking (5b), and Difference-Based Feature Masking (5c). The model is then refined using masked datasets, and the
process iterates (6,7) to improve robustness.

Grad-CAM Computation Given an input image I ∈
RH×W×C , where H is the height, W is the width, and C is
the number of channels, we pass the image through a CNN
model to extract activation maps from the last convolutional
layer. Let Ak ∈ RH′×W ′

denote the activation map for the
k-th feature map, where H ′ and W ′ are the spatial dimen-
sions of the feature map.

1. Importance weight computation
The importance weight αc

k for the target class c is com-
puted by averaging the gradients of the class score with
respect to the activation map:

αc
k =

1

Z

H′∑
i=1

W ′∑
j=1

∂yc

∂Aij
k

(1)

where Z = H ′ ×W ′ is the total number of spatial loca-
tions in the feature map.

2. Weighted sum of feature maps
The Grad-CAM heatmap is then computed as a weighted
sum of the activation maps:

Lc
Grad−CAM = ReLU

(∑
k

αc
kAk

)
(2)

The ReLU function ensures that only positive contribu-
tions are retained, based on the assumption that positive
gradients correspond to features that positively contribute
to the target class prediction.

3. Normalization

To improve numerical stability and ensure consistent
scaling across different samples, we normalize the
heatmap as follows:

Hnorm =
Lc
Grad−CAM −min(Lc

Grad−CAM)

max(Lc
Grad−CAM)−min(Lc

Grad−CAM) + δ
(3)

where δ is a small constant added to prevent division by
zero.

Feature Masking Strategies
We explore three feature masking strategies that utilize the
Grad-CAM heatmap to selectively suppress or retain fea-
tures based on their importance for prediction.

Binary Feature Masking Binary feature masking in-
volves creating a binary mask that retains only the most
activated regions from the Grad-CAM heatmap while set-
ting less relevant regions to zero. This approach directs the
model’s attention toward the most influential features and
minimizes distractions from irrelevant patterns.

1. Threshold-based masking
A binary mask is created by applying a threshold τ to the
normalized heatmap:

τ = 0.8×mean(Hnorm) (4)

The mask is then computed as:

Mbinary(i, j) =

{
1, Hnorm(i, j) > τ
0, otherwise (5)



2. Masked image computation
The masked image is computed as:

Imasked(i, j) = I(i, j) ·Mbinary(i, j) (6)

Figure 2 shows binary masking sample from our three
datasets
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Figure 2: Visualization of resetnet50 based binary feature
masking. (Top) CIFAR-10, (Middle) CIFAR-100, (Bottom)
CIFAR-10C
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Figure 3: Visualization of Gaussian-Blurred feature mask-
ing.(Top) CIFAR-10, (Middle) CIFAR-100, (Bottom)
CIFAR-10C

Gaussian-Blurred Masking Binary masking may lead to
the loss of spatial coherence, which can reduce generaliza-
tion. To mitigate this, Gaussian-blurred masking replaces the
masked-out regions with a smoothed version of the input im-
age, shown in figure 3.
1. Gaussian blur application

We generate a blurred version of the original image using
a Gaussian kernel:

Iblurred = G(I, k) (7)

where k is the Gaussian kernel size controlling the blur
intensity.

2. Soft-masking strategy
The masked image is computed as a weighted combina-
tion of the original and blurred image:

Imasked(i, j) = I(i, j)·M(i, j)+Iblurred(i, j)·(1−M(i, j))
(8)

Difference-Based Masking Difference-based masking
aims to eliminate unstable features by comparing Grad-
CAM activations from the baseline model with those from
a stronger ResNet-50 model.

1. Difference heatmap
The difference heatmap is computed as:

Hdiff = Hbaseline −Hresnet (9)

2. ReLU-like filtering
Negative values (indicating shared features) are removed
using ReLU-like filtering:

Hdiff(i, j) = max(Hdiff(i, j), 0) (10)

3. Mask generation
The mask is computed as:

M(i, j) = 1−Hnorm
diff (11)

4. Masked image
The final masked image is computed as:

Idiffmasked(i, j) = I(i, j) ·M(i, j) (12)

Figure 4 shows samples of difference based masking on
each three of our datasets.

Experimental Results
In this section, we present the details of our experiments, in-
cluding the configuration of adversarial attacks and the eval-
uation process for each masking strategy. We analyze the
impact of each approach on model robustness and discuss
the results in detail.

Baseline Model Architecture
The baseline model is a custom CNN architecture designed
for image classification tasks. It consists of six convolutional
layers with filter sizes of 64, 128, 128, 256, 256, and 512.
Each convolutional layer is followed by batch normalization
to stabilize training and improve convergence. MaxPooling
is applied after the second and fourth convolutional lay-
ers to reduce the spatial dimensions and prevent overfitting.
Dropout is incorporated at three different stages with rates
of 0.25, 0.3, and 0.4 to improve generalization by reducing
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Figure 4: Visualization of difference based feature masking. (Top) CIFAR-10, (Middle) CIFAR-100, (Bottom) CIFAR-10C

co-adaptation of units. Global Average Pooling (GAP) is ap-
plied before the fully connected layers to reduce the number
of parameters and aggregate spatial information. The final
dense layer consists of 512 neurons followed by a softmax
activation function for multi-class classification. The archi-
tecture is adjusted for two classification tasks: a 10-class out-
put for CIFAR-10 and CIFAR-10-C datasets and a 100-class
output for CIFAR-100 dataset. This model architecture pro-
vides a balance between expressiveness and computational
efficiency, making it suitable for evaluating adversarial ro-
bustness under different masking strategies.

Datasets
We evaluate the proposed masking strategies using three
widely used image classification datasets: CIFAR-10,
CIFAR-100, and CIFAR-10-C. CIFAR-10 and CIFAR-100
each consist of 50,000 training images and 10,000 test im-
ages, each with a resolution of 32×32 pixels and three color
channels (RGB). CIFAR-10 contains 10 object categories,
while CIFAR-100 includes 100 object categories. The im-
ages are evenly distributed across all categories, ensuring a
balanced classification task.

CIFAR-10-C is a corrupted version of CIFAR-10 that in-
cludes 950,000 labeled images with 19 different types of
corruption (e.g., Gaussian noise, motion blur, brightness
shifts). Each corruption type is presented at five different
severity levels. For our experiments, we selected 90,000 im-
ages for training and 20,000 images for testing. To main-
tain a balanced dataset, we ensured that each corruption type
contributed an equal number of samples to both the training
and test sets.

Masked datasets were generated by applying each of
the three masking techniques (binary, Gaussian-blurred, and
difference-based) to the training and test sets of CIFAR-10,
CIFAR-100, and CIFAR-10-C. This resulted in a total of

nine masked datasets (three masking strategies applied to
each of the three datasets). These masked datasets were used
to retrain the baseline model and evaluate its robustness un-
der adversarial attacks.

Model Training
We first trained the baseline CNN models on the original
training images from CIFAR-10, CIFAR-100, and CIFAR-
10-C for 200 epochs using the categorical cross-entropy loss
function and a batch size of 32. The Adam optimizer was
used for optimization with an initial learning rate of 0.001,
which was decayed by 5% every 10 epochs. Batch normal-
ization was applied after each convolutional layer to pre-
vent internal covariate shift and improve training stability.
Dropout was used at different levels to reduce overfitting and
improve model generalization.

Adversarial Evaluation
To evaluate the impact of feature masking on adversar-
ial robustness, we followed a two-stage process. First, we
generated masked datasets by applying the three masking
strategies—binary masking, Gaussian-blurred masking, and
difference-based masking—to the training sets of CIFAR-
10, CIFAR-100, and CIFAR-10-C. This resulted in a total of
nine masked datasets. After generating the masked datasets,
we retrained the baseline CNN model separately on each
masked dataset for 100 epochs using the same optimizer,
loss function, and learning rate settings as in the baseline
training. This produced nine distinct models (three masked
datasets for each of the three original datasets). Each model
was trained using a batch size of 32, and the training accu-
racy and loss curves for the masked datasets are shown in
Figure 5.

After retraining, we evaluated the adversarial robustness
of the masked models using two common attack methods:
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Figure 5: Masked Models Training Accuracy (Top Row) and Loss (Bottom Row) Curves for CIFAR-10, CIFAR-100, and
CIFAR-10C datasets.

Fast Gradient Sign Method (FGSM) and Projected Gradient
Descent (PGD). FGSM generates adversarial examples by
perturbing the input in the direction of the gradient of the
loss function. Specifically, adversarial examples are gener-
ated using the equation:

Xadv = X + ϵ · sign(∇XL) (13)
where X is the original input, ϵ is the perturbation mag-

nitude, and ∇XL is the gradient of the loss function with
respect to the input.

PGD generates adversarial examples iteratively using a
step size α according to the equation:

Xt+1
adv = Projϵ(X

t
adv + α · sign(∇XL)) (14)

where α is the step size and Projϵ is the projection opera-
tor that ensures the perturbed sample remains within the L∞
ball of radius ϵ.

Results and Discussion
To evaluate the effectiveness of different feature masking
methods, we conducted adversarial attack experiments us-
ing FGSM and PGD across a range of perturbation levels
(ϵ). The results for binary masking, Gaussian-blurred mask-
ing, and difference-based masking are presented in Figure 6,
7 and in Tables 1, and 2. The analysis focuses on how each
masking technique influences adversarial robustness under
varying attack strengths and different datasets.

Binary Masking Results Binary masking is the most ag-
gressive masking technique among the three approaches,
as it completely removes low-activation regions identified
by Grad-CAM, retaining only the highest-importance fea-
tures. As shown in Figure 6, binary feature masking con-
sistently improves adversarial robustness against FGSM at-
tacks across all tested ϵ values for CIFAR-10, CIFAR-100,
and CIFAR-10-C datasets. This indicates that binary mask-
ing helps the model focus on the most critical features, re-
ducing sensitivity to noise and improving resilience against
single-step gradient-based attacks.

However, the effectiveness of binary masking is less con-
sistent against PGD attacks. While the results for FGSM are
positive across all perturbation levels, binary masking im-
proves PGD robustness only at lower perturbation strengths
(e.g., ϵ = 0.01 and ϵ = 0.02). At higher perturbation lev-
els, binary masking shows diminishing returns and even-
tually fails to defend against stronger iterative attacks like

PGD. This suggests that while binary masking helps mit-
igate weaker adversarial attacks by sharpening the model’s
focus on high-saliency regions, it struggles to defend against
more adaptive and iterative attacks, where masked regions
might be exploited to craft stronger perturbations.

The overall pattern indicates that binary masking en-
hances adversarial robustness by reinforcing the model’s re-
liance on the most influential features, which explains the
consistent improvement in FGSM accuracy. However, the
lack of contextual information due to aggressive feature re-
moval appears to limit its ability to handle complex pertur-
bations generated by iterative methods like PGD. This high-
lights a fundamental trade-off between model specificity and
generalization when employing binary masking as a defense
mechanism.

Gaussian-Blurred Masking Gaussian-blurred masking
preserves contextual information by applying a blurred
transformation to the less relevant regions identified by
Grad-CAM. Unlike binary masking, which completely re-
moves low-activation regions, Gaussian-blurred masking
softens these areas, allowing the model to retain global struc-
ture and context while focusing on discriminative features.

Table 1 shows that Gaussian-blurred masking signifi-
cantly improves robustness against PGD attacks across all
tested ϵ values for CIFAR-10, CIFAR-100, and CIFAR-10-
C datasets. Notably, at a higher perturbation level of ϵ =
0.1, Gaussian-blurred masking achieves a PGD accuracy of
9.89% on CIFAR-10, compared to 0.0% for the baseline
model. This demonstrates that introducing a controlled level
of smoothing in non-salient regions enhances the model’s
ability to withstand more aggressive iterative attacks.

Gaussian-blurred masking also shows consistent im-
provements against FGSM attacks as illustrate in Figure 7,
albeit at a smaller scale than PGD. This contrasts with bi-
nary masking, which primarily benefits FGSM attacks but
struggles with stronger, iterative perturbations. The ability
of Gaussian-blurred masking to achieve uniform gains for
both FGSM and PGD attacks—particularly at low pertur-
bation levels—highlights its advantage in promoting better
generalization. Soft attenuation of non-salient features ap-
pears to help the model maintain stable feature representa-
tions, thereby improving resilience against both single-step
and multi-step adversarial attacks.



Figure 6: Adversarial attack results across different datasets. This bar chart compares adversarial accuracy of FGSM and PGD
attacks with and without binary feature masking across different ϵ values.

Figure 7: Adversarial attack results across different datasets. This bar chart compares adversarial accuracy of FGSM attacks
with and without Gaussian-Blurred feature masking across different ϵ values.

Difference-Based Masking Difference-based masking
removes the least amount of pixel information among all
the masking strategies, masking only a small portion of the
image. As shown in Figure 4, despite the minimal mod-
ification to the input, this approach consistently improves
FGSM accuracy across all tested ϵ values. The steady in-
crease in FGSM accuracy suggests that eliminating unsta-
ble, low-saliency features helps the model focus on more
robust and generalizable patterns, enhancing its resistance
to single-step gradient-based attacks. However, the effec-
tiveness of difference-based masking against PGD attacks
is more limited. Table 2 shows that this masking technique
improves robustness against weaker PGD attacks (e.g., at
lower perturbation levels), but its defensive capability di-
minishes under stronger iterative attacks. This outcome re-
flects the relatively conservative nature of difference-based
masking—while it retains most of the original image in-
formation, it may fail to sufficiently suppress attack-prone
regions under more aggressive perturbations. Nevertheless,
the consistent improvement in FGSM accuracy demon-
strates that even small-scale feature refinement can enhance
the model’s resilience to single-step adversarial attacks.

Conclusion
In this work, we proposed an explainability-driven defense
framework that leverages Grad-CAM-guided feature mask-
ing to enhance the adversarial robustness of Convolutional
Neural Networks. We introduced and systematically eval-
uated three distinct masking strategies: binary masking,
Gaussian-blurred masking, and difference-based masking.
Each strategy was designed to selectively retain or sup-

press input features based on their saliency, encouraging
the model to focus on stable and discriminative patterns
while mitigating the impact of adversarial perturbations.
Our experimental results demonstrate that all three mask-
ing strategies improve adversarial robustness to varying de-
grees across different datasets and attack methods. While
the study highlights the potential of feature masking as a
lightweight adversarial defense, several areas warrant fur-
ther exploration. A key direction is to investigate whether
counterfactual feature masking can enhance robustness fur-
ther, as well as how varying the strength of blurring and
masking thresholds impacts performance. Integrating ex-
plainability techniques to analyze the influence of mask-
ing on model decision-making could provide deeper insights
into adversarial robustness.
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