Online Learning-Based Android Malware Detection Using API Call Graphs and
Drift Detection: A Comparative Study

Mohammed Daawar Hussain'!, Ali Muzaffar!

'Heriot-Watt University, Dubai, UAE
School of Mathematical and Computer Sciences
mdh2000@hw.ac.uk, ali.muzaffar@hw.ac.uk

Abstract

The rapid growth and complexity of Android applications
have made the platform a serious target for cybercriminals,
posing substantial risks to mobile security and user data.
Traditional malware detection models, although they have
shown promise, can hardly be applied at run-time since they
cannot adapt quickly enough to new malware variants and
evolving attack methods. Such models, trained on preexisting
data, suffer from performance degradation due to concept
drift, where data distributions change over time as malware
evolves. This paper presents an Online Learning-Based
Android Malware Detection framework that systematically
pairs various drift detection algorithms—such as ADWIN,
DDM, and EDDM—with various machine learning models
to identify the most effective combinations for maintaining
detection accuracy in real-time. Our best-performing model
achieved an accuracy of up to 96.01%.

Keywords: Malware detection; Android security; Ma-
chine learning; Online learning; Drift detection

Introduction

In an era where mobile technology is indispensable, the
Android platform has become a dominant force, powering
billions of devices worldwide. According to StatCounter
(2024), Android currently commands 71.17% of the global
mobile operating system market, emphasising its extensive
use and broad reach. However, this widespread adoption,
coupled with Android’s open-source nature, makes it a fre-
quent target for malicious actors who exploit app vulnera-
bilities and compromise user privacy and data security. In
response, machine learning (ML) has emerged as a power-
ful tool for malware detection, offering the ability to auto-
matically identify complex and evolving threat patterns that
rule-based systems may miss (Muzaffar et al. 2023a).
Traditional ML classifiers such as Decision Trees, Ran-
dom Forests, SVMs, and Logistic Regression have been
used with both static and dynamic analysis to improve de-
tection accuracy. However, these models are often trained of-
fline on fixed datasets, limiting their ability to adapt in real-
time to new, dynamic threats. A key challenge is concept
drift, where malware behaviour changes over time, leading

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to degraded performance if models are not regularly updated
(Liu et al. 2020).

Online learning models such as Passive Aggressive (PA)
(Crammer et al. 2006), Hoeffding Trees (Domingos and
Hulten 2000), Adaptive Random Forests (ARF) (Gomes
et al. 2017), and Stochastic Gradient Descent (SGD) (Bot-
tou 2010) offer incremental learning capabilities that sup-
port real-time updates. Several frameworks like DroidOL
(Narayanan et al. 2016), CASANDRA (Narayanan et al.
2017), and AIBL-MVD (Darem et al. 2021) have demon-
strated the practical benefits of these models, though many
overlook or simplify the problem of drift. To explicitly ad-
dress evolving malware behavior, concept drift detectors
such as DDM (Gama et al. 2004), EDDM (Baena-Garcia
et al. 2006), ADWIN (Bifet and Gavalda 2007), PHT (Page
1954), and Hoeffding-based methods (Frias-Blanco et al.
2015) have been proposed, yet a comprehensive evaluation
across multiple detectors and classifiers remains lacking.

This study builds upon the ActDroid framework (Muzaf-
far et al. 2024a) by evaluating a range of drift detection tech-
niques in conjunction with multiple ML models, to iden-
tify the most effective combinations for enhancing accuracy
in real-time Android malware detection. It presents a com-
parative analysis of drift detection algorithms within an ac-
tive learning setting, investigates their empirical impact on
model performance, and offers practical recommendations
for selecting optimal model-detector pairings. Through this,
the study aims to improve the adaptability and long-term ro-
bustness of malware detection systems in dynamic threat en-
vironments.

Methodology

Dataset We use the "Android Dataset for Malware De-
tection” (Muzaffar et al. 2024b, 2023b), obtained from
the Heriot-Watt University Research Portal, which contains
16,208 Android applications—8,106 benign and 8,102 ma-
licious—collected between 2019 and 2021. For this study,
only static API call graphs were retained for modelling, as
prior research (Muzaffar et al. 2023a) found dynamic fea-
tures (e.g., system calls, traffic logs) offer marginal gains
relative to their computational cost. To simulate a real-time
streaming environment, apps were ordered chronologically
by release date; in cases where malware lacked known re-
lease dates, an estimated appearance date was calculated as

Model DDM EDDM PHT ADWIN HDDM_A
ARF 5 18 6 6 4
HT 5 18 6 7 1
PAC 0 0 4 2 0
SGD 0 9 1 1 0

Table 1: Drift detection counts for each model.

40 days prior to their VirusTotal submission, accounting for
typical threat detection delays.

Feature Selection Each app is converted into a directed
call graph, where nodes represent API calls and edges de-
note execution order (API Call graph); acyclic graphs are
topologically sorted, while cyclic ones undergo breadth-first
traversal to extract a space-separated API call sequence.
These sequences are then transformed into high-dimensional
sparse vectors using TF-IDF, with 5-7 length n-grams and
a vocabulary limited to the top 100,000 terms for scala-
bility. To enhance model efficiency and relevance, mutual
information-based filtering is applied to retain the top 30,000
most informative features for training.

Model Selection We evaluate four online learning models
for their suitability in handling streaming data efficiently:
Passive Aggressive Classifier (PAC), Hoeffding Tree (HT),
Adaptive Random Forest (ARF), and Stochastic Gradient
Descent (SGD). All models were implemented using the
River library with consistent preprocessing and vectorized
API call graph features.

Drift Detection Algorithms To address concept drift in
streaming malware detection, we evaluate five commonly
used drift detection algorithms: DDM, EDDM, HDDM_A,
ADWIN, and PHT. These were selected because of their dif-
fering sensitivities to abrupt and gradual drifts. All detectors
are used with their default configurations from the River
library (Montiel et al. 2021).

Experimental Framework The proposed experimental
framework is an Online Learning-based Android malware
detection system designed to incrementally adapt to threats
using real-time model updates and integrated concept drift
detection. Android APKS are collected from public sources
and labelled using VirusTotal results. Each app is repre-
sented through API call graphs, which are transformed into
TF-IDF vectors for model input. The River library is used
to deploy online learning models and drift detectors, en-
abling step-by-step predictions, feedback from ground truth
labels, and real-time drift monitoring. Upon drift detection,
the model is reset to prevent performance degradation due
to outdated patterns. This process allows real-time learning
without requiring full retraining on the entire dataset, allow-
ing adaptation to changing malware patterns whilst main-
taining lightweight resource requirements.

Results & Discussion

The experimental results show that model performance
is closely tied to the interaction between each model’s
adaptability and the sensitivity of its paired drift detector.

_— Make Prediction

 ode L

Drift Detection Module

Featre Exvacton
] — o
B Train One

Feature Vector

[‘Obtain VirusTotal Label
(Incremental Training)

.‘/‘

Obtain VirusTotal Label

2000 4000 6000 8000 10000 12000 14000 16000
Timestamp

Figure 2: Accuracy over time for all the models with differ-
ent drift detectors.

The PAC and SGD model achieved the highest accuracies
(94-96%) when no resets occurred, showing stability in
mostly stable data streams. However, without drift handling,
these models may struggle with abrupt changes. Drift de-
tectors help address this by prompting timely resets, though
frequent or unnecessary resets can lower final accuracy.

Among the detectors, DDM and HDDM_A were conser-
vative, triggering few resets and supporting stable learning,
especially with PA. EDDM was more sensitive to gradual
changes but sometimes overreacted, reducing effectiveness
when the drift was minor. ADWIN and PHT provided a mid-
dle ground, identifying moderate drift and correcting model
errors earlier, though sometimes at the cost of stability in
mostly consistent data.

Model-wise, PAC and SGD benefited from continuous
linear updates, while Hoeffding Trees reached 88-89%
when paired with drift detectors. Adaptive Random Forests
performed moderately overall but excelled in abrupt-drift
scenarios when combined with balanced detectors like DDM
or PHT.

In summary, no single model-detector combination was
universally superior, but rather the best results depended on

Model Accuracy
Adaptive Random Forest (ARF) 76.82%
Hoeffding Tree (HT) 87.14%
Passive-Aggressive Classifier (PA) 93.97%
Stochastic Gradient Descent (SGD) 95.38%

Table 2: Mean Accuracy Across All Models (No drift detec-
tors incorporated)

how volatile the data stream was. This highlights the need
to align drift detector sensitivity with expected concept drift
patterns to maintain both accuracy and adaptability.

Conclusions

This study presented a real-time Android malware detection
framework combining online learning with drift detection
to adapt to evolving threats without full retraining. Among
the models and detectors evaluated, the performance varied
by drift type, with Passive-Aggressive and SGD achieving
the highest accuracy when resets were minimal. Although
effective, the framework assumes immediate label availabil-
ity and has yet to be tested in extremely high data veloc-
ity streams. Future work should explore delayed labelling,
memory-efficient models, and adaptive neural networks to
enhance scalability and robustness, with potential applica-
tions that extend to other dynamic cybersecurity domains.

References
Baena-Garcia, M.; del Campo-AVila, J.; Fidalgo, R.; Bifet,
A.; Gavalda, R.; and Morales-Bueno, R. 2006. Early drift
detection method. In Proceedings of the International
Workshop on Knowledge Discovery from Data Streams
(IWKDDS’06), 77-86. Berlin, Germany: Workshop Pro-
ceedings.
Bifet, A.; and Gavalda, R. 2007. Learning from Time-
Changing Data with Adaptive Windowing. In Proceedings
of the 2007 SIAM International Conference on Data Mining,
443-448. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics (SIAM).
Bottou, L. 2010. Large-Scale Machine Learning with
Stochastic Gradient Descent. In Lechevallier, Y.; and
Saporta, G., eds., Proceedings of the 19th International Con-
ference on Computational Statistics (COMPSTAT’2010),
177-187. Paris, France: Springer.
Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; and
Singer, Y. 2006. Online Passive-Aggressive Algorithms.
Journal of Machine Learning Research, 7: 551-585.
Darem, A. A.; Ghaleb, F. A.; Al-Hashmi, A. A.; Abawajy,
J. H.; Alanazi, S. M.; and Al-Rezami, A. Y. 2021. An Adap-
tive Behavioral-Based Incremental Batch Learning Malware
Variants Detection Model Using Concept Drift Detection
and Sequential Deep Learning. IEEE Access, 9: 97180—
97196.
Domingos, P.; and Hulten, G. 2000. Mining High-Speed
Data Streams. In Proceedings of the Sixth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD), 71-80. ACM, Boston, MA, USA: ACM.

Frias-Blanco, 1.; Campo-AVila, J. d.; Ramos-Jiménez, G.;
Morales-Bueno, R.; Ortiz-Diaz, A.; and Caballero-Mota, Y.
2015. Online and Non-Parametric Drift Detection Meth-
ods Based on Hoeffding’s Bounds. IEEE Transactions on
Knowledge and Data Engineering, 27(3): 810-823.

Gama, J.; Medas, P.; Castillo, G.; and Rodrigues, P. 2004.
Learning with drift detection. In Bazzan, A.; and Labidi, S.,
eds., Advances in Artificial Intelligence — SBIA 2004, vol-
ume 3171 of Lecture Notes in Computer Science, 66—112.
Berlin/Heidelberg: Springer.

Gomes, H. M.; Barddal, J. P.; Enembreck, F.; and Bifet, A.
2017. Adaptive random forests for evolving data stream
classification. Machine Learning, 106(9-10): 1469-1495.
Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; and Liu, H.
2020. A Review of Android Malware Detection Approaches
Based on Machine Learning. [EEE Access, 8: 124579—
124607.

Montiel, J.; Halford, M.; Mastelini, S. M.; Bolmier, G.;
Sourty, R.; Vaysse, R.; Zouitine, A.; Gomes, H. M.; Read,
J.; Abdessalem, T.; et al. 2021. River: Machine Learning
for Streaming Data in Python. Journal of Machine Learning
Research, 22(123): 1-8.

Muzaffar, A.; Hassen, H. R.; Zantout, H.; and Lones, M. A.
2023a. Investigating Feature and Model Importance in
Android Malware Detection: An Implemented Survey and
Experimental Comparison of ML-Based Methods. arXiv,
abs/2301.12778: 1-30.

Muzaffar, A.; Hassen, H. R.; Zantout, H.; and Lones, M. A.
2024a. ActDroid: An active learning framework for Android
malware detection. Preprint submitted to Elsevier, -(-): 1-
XX. Available as a preprint on arXiv.

Muzaffar, A.; Hassen, H. R.; Zantout, H.; and Lones, M. A.
2024b. Android Dataset for Malware Detection. Accessed:
2024-11-17.

Muzaffar, A.; Ragab Hassen, H.; Zantout, H.; and Lones,
M. A. 2023b. Droiddissector: A static and dynamic analysis
tool for android malware detection. In International Confer-
ence on Applied CyberSecurity, 3-9. Springer.

Narayanan, A.; Chandramohan, M.; Chen, L.; and Liu, Y.
2017. Context-Aware, Adaptive, and Scalable Android Mal-
ware Detection Through Online Learning. /EEE Transac-

tions on Emerging Topics in Computational Intelligence, 1:
157-175.

Narayanan, A.; Yang, L.; Chen, L.; and Liu, J. 2016. Adap-
tive and Scalable Android Malware Detection through On-
line Learning. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), 2484-2491. Van-
couver, BC, Canada: IEEE.

Page, E. S. 1954. Continuous inspection schemes.
Biometrika, 41(1/2): 100-115.

StatCounter. 2024. Mobile Operating System Market
Share Worldwide. https://gs.statcounter.com/os-market-
share/mobile/worldwide. Accessed: 2024-11-21.

