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Abstract

Despite the benefits of user interface/experience (UI/UX) de-
sign, traditional usability testing remains resource-intensive
and repetitive. This study proposes a novel system that in-
tegrates real-time browser-based eye-tracking with a multi-
modal agentic framework to automate UI evaluation. Par-
ticipants interacted with task-specific interfaces while their
gaze data was captured and analysed by a multi-agent system
to generate structured usability reports grounded in heuristic
principles. Precision metrics were used to quantify qualitative
insights, enabling measurable evaluation. To enhance accessi-
bility, a comparative analysis was conducted between propri-
etary and open-source Large Language Models (LLMs). Re-
sults showed that proprietary models consistently delivered
accurate insights, whereas smaller local models struggled
with reliability — highlighting future directions for offline
deployment. The findings contribute to the advancement of
AI-driven solutions in usability evaluation, showcasing how
agentic systems integrated with browser-based eye-tracking
tools can overcome traditional limitations.

Introduction
The quality of user interface and experience (UI/UX) design
influences our digital experience profoundly, often going
unnoticed until it’s done wrong. Effective UI/UX enhances
visual appeal, communicates brand identity, and ensures
intuitive user experiences. With the continuous evolution
of Artificial Intelligence (AI), the field of UI/UX has also
been evolving (Bertão and Joo 2021). Researchers are
delving into the application of AI tools in five key areas
of the design process: understanding the context of use,
user requirements, solution design, evaluating design, and
development of solutions (Stige et al. 2023).
However, design evaluation remains a particularly repet-
itive and time-consuming step, requiring multiple rounds
of refinement to meet user needs (Stige et al. 2023). Eye-
tracking, although long explored in usability research (Jacob
2002; Poole and Ball 2004), has faced adoption barriers due
to its reliance on expensive, specialised equipment.
Recent studies have introduced AI-driven tools for UI
generation, such as MetaMorph (Pandian et al. 2020), which
uses computer vision to convert sketches into high-fidelity
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prototypes, and Paper2Wire (Buschek, Anlauff, and Lachner
2020), which applies machine learning to digitize hand-
drawn wireframes. Despite these advancements, limited
research has been conducted on the integration of agentic
systems — a recent advancement in AI — into the UI/UX
design process. To the best of our knowledge, no studies
have utilized agentic systems within the field of UI/UX.
This study takes an innovative approach by integrating
multimodal agentic systems and real-time eye-tracking
technology for UI evaluation.
This study aims to improve the efficiency and accessibility
of usability testing, particularly in developing regions where
internet connectivity is limited or costly. By automating UI
evaluation and minimizing repetitive tasks, the proposed
system enables UI/UX designers to focus on higher-level
creative decisions and design refinement. Additionally, the
study also quantifies the resulting qualitative usability data
by utilizing precision metrics.
To support broader accessibility, the system was evaluated
using both state-of-the-art Large Language Models (LLMs)
and smaller, local open-source models. While proprietary
models produced more accurate and structured results,
open-source alternatives were less reliable. These findings
highlight the need to refine the system architecture for
local deployment, enabling fully offline processing of
eye-tracking data and usability reporting — making the
solution more cost-effective and accessible. There is a
general consensus that AI should not be used for automating
the entire process, but rather it should offer designers the
tools that can make the design process easier and more
efficient (Gardey et al. 2022).

The key contributions of this work are as follows:

• A webcam-based platform for real-time UI evaluation,
combining gaze tracking with agentic analysis.

• Validation of the system’s capability to detect usability
issues and generate structured, actionable reports.

• A comparative analysis of proprietary and open-source
multimodal LLMs integrated into the agentic evaluation
pipeline.

• Quantification of qualitative usability feedback using
precision metrics, providing a measurable assessment of
system performance.



Background
Augmented AI tools in UI Evaluation
Human feedback—such as from user studies and expert
evaluations—has long been essential for refining UIs. Tradi-
tionally, this feedback relied on heuristic evaluations using
predefined guidelines (Nielsen 1994; Shneiderman 1998).
The field later shifted toward scalable automated assess-
ments with tools like ARNAULD (Gajos and Weld 2005),
though early efforts were limited by developer-centric eval-
uations. Subsequent work by (Miniukovich and Angeli
2015) expanded this direction with psychology-based met-
rics, which proved effective primarily for websites. Recent
advances like (Haddad et al. 2024) combined eye-tracking,
facial expressions, and EEG data to classify GUI designs
as ’good’ or ’bad.’ However, their method faces three key
limitations: (1) reliance on separate computational models
for each modality, (2) an oversimplified binary classifica-
tion that ignores nuanced design variations, and (3) depen-
dence on expensive, impractical hardware. Parallel work by
(Duan et al. 2024) investigated LLM-based heuristic feed-
back through a Figma plugin, but encountered low preci-
sion due to the generation of excessive irrelevant sugges-
tions. Notably, their findings highlight the potential of mul-
timodal LLMs to overcome these challenges — a direction
that aligns with this study’s goals of developing a more uni-
fied and accessible UI evaluation framework.

Multimodal LLMs
The real-world is a multimodal (MM) environment where
information is perceived and exchanged in various modes,
such as vision, sound, language, and touch. Augment-
ing LLMs with MM capabilities has witnessed significant
progress, as proven by the works of (Sun et al. 2023)
and (Ge et al. 2023). This evolution began with traditional
cross-modal models that could only generate one modal-
ity from another (e.g., text-to-image (Rombach et al. 2021)
or text-to-audio (Huang et al. 2023)) through multi-step
processes. A major breakthrough came with Composable
Diffusion (CoDi) (Tang et al. 2023b), which became the
first model capable of simultaneously processing and gen-
erating different modality combinations. However, CoDi’s
lack of a core LLM limited its reasoning capabilities (Zhan
et al. 2024), leading to the development of CoDi-2 (Tang
et al. 2023a) with enhanced in-context learning and multi-
modal chat features. The field advanced further with NExT-
GPT (Wu et al. 2023b), which connected LLMs with mul-
timodal adapters and diffusion models to achieve strong
performance across text-to-image, audio, and particularly
video generation. While NExT-GPT demonstrated the po-
tential of unified architectures, it faced limitations from us-
ing frozen pretrained components, resulting in alignment in-
consistencies (Zhan et al. 2024). These challenges were ef-
fectively addressed by AnyGPT (Zhan et al. 2024), which
introduced discrete tokenisation and a novel any-to-any in-
struction dataset (AnyInstruct-108k) to achieve robust mul-
timodal unification without modifying the core LLM archi-
tecture.

LLM-based Agentic Systems
In recent years, LLMs such as ChatGPT, based on the Gen-
erative Pre-trained Transformer (GPT) architecture, have
gained widespread attention for their impressive perfor-
mance on diverse language tasks. Researchers have increas-
ingly leveraged LLMs to develop intelligent agents capable
of addressing complex, real-world scenarios — from soft-
ware development (Hong et al. 2023) to human behaviour
simulation (Park et al. 2023). A significant development in
this space is MetaGPT (Hong et al. 2023), which imple-
ments a multi-agent system (MAS) framework using Stan-
dardised Operating Procedures (SOPs) to coordinate spe-
cialised agents (e.g., Project Managers, Engineers). While
demonstrating strong performance on programming bench-
marks, its limitations in handling domain-specific tasks —
particularly in UI contexts — suggest the need for mul-
timodal enhancements. The effectiveness of such MAS
frameworks stems from their ability to combine specialised
agents through structured collaboration (Dohan et al. 2022),
which reduces hallucinations and improves reasoning (Bang
et al. 2023; Talebirad and Nadiri 2023). (Talebirad and
Nadiri 2023) advanced this approach through Intelligent
Generative Agents (IGAs) with dynamic role allocation and
feedback mechanisms, though the lack of evaluation metrics
raises scalability questions. Similarly, (Shen et al. 2024)’s
Data Director system demonstrated how pipeline-structured
agent teams (analysts, designers) could generate animated
data videos. While effective, its authors highlight the need
for multimodal LLMs to improve performance in handling
diverse input types. This study infers that while agentic sys-
tems have been successfully explored in various contexts (Li
et al. 2023; Chen et al. 2023; Shen et al. 2024), they have not
been fully leveraged in the field of UI/UX design.

Eye-Tracking in Usability
Eye-tracking has evolved from its origins in reading stud-
ies (Poole and Ball 2004) to become a cornerstone of UI
evaluation, enabling objective assessment of element place-
ment and visibility through gaze patterns and Areas of In-
terest (AOIs) (Hasse and Bruder 2015). While traditional
approaches using specialized hardware (e.g., Tobii systems)
provide high precision (van den Berg, Engelsma, and Peute
2024; Wang et al. 2019), their cost and accessibility limi-
tations have hindered widespread adoption (Zelinskyi and
Boyko 2024). This challenge spurred the development of ac-
cessible alternatives. TurkerGaze (Xu et al. 2015) pioneered
webcam-based tracking through Amazon Mechanical Turk,
using facial landmarks with Ridge Regression (RR), later
refined with Support Vector Regression (SVR), to achieve
scalable saliency prediction. The field advanced further with
WebGazer (Papoutsaki et al. 2016), which introduced the
first browser-based solution requiring no explicit calibra-
tion. It assumes gaze aligns with interaction points (e.g.,
cursor clicks) and continuously adapts using RR on 120-
dimensional eye feature vectors, while operating entirely
client-side. In a comparative study with the commercial To-
bii EyeX, it achieved similar mean errors, validating its ef-
fectiveness. Recent analyses confirm webcams have become
the dominant hardware for usability studies (Novák et al.



2023), demonstrating the field’s shift toward scalable, cost-
effective solutions.

Methodology
System Architecture
The proposed system automates usability evaluation by
combining browser-based eye-tracking, real-time heatmap
generation, and a multi-agent LLM analysis pipeline (illus-
trated in Figure 1). The input layer consists of a web-based
interface built with HTML, CSS, and JavaScript, integrating
WebGazer.js (Papoutsaki et al. 2016) for gaze capture and
heatmap.js for real-time visualisation as users interact with
static UI images. The interface includes three key screens:
a Start Screen to initiate calibration, a Calibration Screen
using a 4×4 clickable dot grid with colour-coded feedback
(red → yellow → green), and a Homepage where users can
observe the UI images. Gaze data is sent to a Flask back-
end, where OpenCV overlays the heatmap onto its corre-
sponding UI screenshot. This combined image serves as a
behavioural input for further analysis. The initial image and
heatmap data are first processed externally via an LLM API,
where the model extracts structured usability insights based
on visual attention patterns — connecting user behaviour
directly to heuristic-based usability evaluation. These pre-
liminary findings are then passed into the MAS - imple-
mented using CrewAI - for further reasoning. The output
layer compiles a comprehensive Markdown usability report
detailing strengths, weaknesses, WCAG (W3C 2023) com-
pliance, and prioritised recommendations. Structured output
is ensured using Pydantic, maintaining consistency across
agent responses.

Agentic System
Framework Selection Rationale Several agentic frame-
works were considered for this study, including AutoGen
(Wu et al. 2023a), LangChain, and CrewAI, each offering
distinct advantages in multi-agent collaboration. AutoGen
excels in dynamic conversational agents with flexible role
assignments, while LangChain provides extensive modular-
ity for integrating diverse tools and retrieval-augmented gen-
eration (RAG). However, CrewAI was selected for its struc-
tured approach to agent specialisation, explicit task dele-
gation, and seamless support for sequential workflows —
critical features for the proposed system. Unlike AutoGen,
which prioritises conversational adaptability over strict task
sequencing, or LangChain, which requires extensive cus-
tomisation for multi-agent collaboration, CrewAI enforces
a clear hierarchy of roles and responsibilities. This ensures
deterministic execution of heuristic evaluations and report
generation, aligning with the study’s need for reproducible,
standards-compliant outputs. Furthermore, CrewAI’s native
integration with validation models (e.g., Pydantic) guaran-
tees structured outputs, ensuring consistent, reproducible re-
sults across all evaluations.

Agent and Task Initialisation The first agent, the
UI/UX Recommendation Specialist (ui recommender),
was tasked with generating actionable recommendations

by analysing user behaviour data against established us-
ability heuristics and accessibility standards. Prompt en-
gineering was used to enforce structured outputs, includ-
ing detailed issue descriptions, heatmap correlations, and
prioritised fixes. The second agent, the Report Compiler
(report compiler), transformed the validated recom-
mendations into a structured Markdown report. The work-
flow followed a strict sequential order, with outputs from the
UI Recommender feeding directly into the Report Compiler.
This analysis → validation → synthesis pipeline, combined
with YAML-based task definitions and prompt constraints,
ensured consistent, reproducible, and standards-aligned out-
puts.
The original methodology initially consisted of four agents
within the MAS:
• Preprocessing agent
• Analysis agent
• Recommendation agent
• Reporting agent

However, preliminary testing revealed that the initial as-
sumption regarding the Preprocessing Agent was incorrect,
as direct Python-based data preprocessing proved more ef-
ficient. An Analysis Agent was also designed to process
base64-encoded screenshots, but testing showed that the
model’s context window could not accommodate the com-
bined volume of image data and supplementary metadata
passed through CrewAI, leading to systemic failures. To re-
solve this, preliminary image analysis was offloaded to a
dedicated API-based LLM service, which extracted struc-
tured textual insights before forwarding them to the UI Rec-
ommender Agent for further processing. Based on these
findings, the implemented MAS architecture comprises two
specialised agents highlighted in Table 1.

Agent Description
ui recommender Conducts heuristic usability assess-

ments against relevant UI/UX stan-
dards, using the initial textual anal-
ysis from the API as input.

reporter compiler Generates usability evaluation re-
port in markdown format, enforcing
structured outputs through Pydantic
validation based on the results from
the Recommendation agent.

Table 1: Agent Roles and their Descriptions

LLM Integration
The system was initially integrated with state-of-the-art
cloud-based multimodal LLMs, using each provider’s offi-
cial API to ensure reliability and compatibility. The models
tested during early development can be found in Table 2.

While these models delivered high-quality and struc-
tured outputs, they required constant internet access, which
introduces accessibility barriers in low-resource environ-
ments—especially in developing regions where internet con-
nectivity is limited, costly, or subject to data caps. To address



Figure 1: Overview of the Proposed Automated Usability Evaluation System

Models Provider
GPT-4o (OpenAI et al.
2024)

OpenAI

Gemini-2.0-Flash Google DeepMind
Pixtral Large 2411 Mistral AI
Claude 3.5 Sonnet Anthropic

Table 2: Multimodal Cloud-based Models Used

this, the system was adapted for local deployment, enabling
all processing to occur on-device without requiring inter-
net connectivity. This supports the study’s broader goal of
accessibility and sustainability in usability evaluation. Lo-
cal models were integrated using LMStudio, a lightweight
desktop application that allows running open-source mod-
els locally via an OpenAI-compatible API. The open-source
models tested for local performance can be found in Table
3:

Model Name Parameters Provider
Gemma 3 (Team
et al. 2025a)

4B Google Deep-
Mind

LLaVA v1.5 (Liu
et al. 2023)

7B Microsoft Re-
search

Granite Vision (Team
et al. 2025b)

3.2B IBM Research

Table 3: Open-Source Local Multimodal Models Used

Evaluation and Results
The evaluation of the system’s output consisted of two key
components. First, the generated usability reports were
reviewed by the experimenter to assess their accuracy. Sec-
ond, the actual interfaces provided to the participants were

evaluated directly by the participants themselves. Addition-
ally, the system was evaluated with multiple cloud-based
and local LLMs capable of processing multimodal inputs to
ensure robustness and generalizability. A key aspect of this
evaluation involved assessing the precision of the models in
classifying usability strengths and weaknesses. Precision is
defined as:

Precision =
TP

TP + FP
(1)

Where:
• TP (true positives) represents the correctly identified

usability strengths or weaknesses.
• FP (false positives) represents cases where an aspect

was misclassified as a strength or weakness.
Each model was evaluated based on:

• Overall precision: A comparison of each model’s gen-
eral accuracy in distinguishing usability strengths and
weaknesses.

• Category-specific precision: Analyzing precision sepa-
rately for strengths and weaknesses to understand model-
specific tendencies.

• Runtime analysis: Comparing the time taken by each
model to generate usability reports.

Study Design and Experimental Setup
The usability study was conducted in a controlled lab envi-
ronment on a personal machine with a GTX 1660 Ti GPU,
16GB RAM and an AMD Ryzen 7 processor. The study con-
sisted of sixteen participants who provided their digital con-
sent to being a part of the evaluation. They were recruited
through voluntary participation without a specific statisti-
cal sampling approach. Participants were informed of the
non-invasive eye-tracking setup and assured that their gaze



Figure 2: Good variation of the Interface

data would be anonymised in accordance with GDPR stan-
dards. Calibration was completed using a 4×4 clickable dot
grid, after which participants interacted with three UI im-
ages, each representing a variation of the same product page
use case: good, moderate, and poor designs (see Figures 2,
4 and 6 respectively). Image order was randomised to re-
duce bias. To minimize distractions, WebGazer.js’s predic-
tion point and camera preview were hidden during the eval-
uation. After viewing each image, participants completed
a post-image questionnaire adapted from the QUIS (Chin,
Diehl, and Norman 1988) and PUTQ frameworks. This im-
mediate feedback approach ensured higher accuracy by cap-
turing impressions while still fresh. These UI-specific ques-
tionnaires were selected to match the study’s focus on static
interfaces. Questions were slightly simplified for partici-
pants with varying UI/UX expertise without altering their
core intent. A final post-test questionnaire captured compar-
ative preferences across all three UI designs.

Eye-Tracking and Usability Study Results
This subsection presents the findings from the eye-tracking
and usability evaluations. First, participant responses and in-
teraction patterns are analysed for each interface individu-
ally. Subsequently, a comparative assessment across all three
interfaces is provided to identify overarching trends and dis-
tinctions in usability performance.

Good UI Variation
While design is subjective, the good variation of the user in-
terface, as illustrated in Figure 2, thoroughly followed indus-
try standard and user interface guidelines such as Nielsen’s
Heuristics and Fitts’ Law in its objective implementation.
Participant data (as seen in Figure 3) supported these adher-
ence to standards as all participants voted 7+ for the ’Or-
ganisation of Information’ on a scale from 0 to 10, with 0
being ’Confusing’ and 10 being ’Very Clear’, with half the
participants voting 9 out of 10. Most participants (62.5%)
did not find the interface cluttered, with only one high score
attributed to human error. The system’s automated analysis
reinforced these findings, repeatedly identifying the visual
prominence of key UI elements (e.g., product image, name,
price, and CTA button) and noting contrast issues in sec-
ondary elements like breadcrumb links. The model achieved

Figure 3: Participants’ opinions on the Organisation of In-
formation on the screen. Question taken from (Chin, Diehl,
and Norman 1988)

a strength precision of 97.56% and a weakness precision of
70.00%, demonstrating high reliability in identifying key us-
ability attributes.

Moderate UI Variation

Figure 4: Moderate variation of the Interface

The moderate variation of the use case (Figure 4) was de-
signed to introduce minor usability friction by subtly vio-
lating established UI principles while remaining functional.
Unlike the good variation, which followed best practices,
this version tested user adaptability to less intuitive inter-
actions. A key issue was information clarity, only 25% of
participants rated character readability at the highest level
(10), while another 25% rated it at 5, indicating moderate
difficulty. Scores of 8 and 9 received 12.5% each, reflecting
mixed perceptions of readability. Another challenge was the
visibility of interactive elements. The CTA button was inten-
tionally blended into the background, reducing its salience.
Participant feedback in Figure 5 confirmed this, with only
6% quickly identifying the primary action (”Add to basket”).

The crew’s analysis supports these findings, highlight-
ing that while centrally placed product images naturally
attracted attention, navigation menus and call-to-action



Figure 5: Comparison of CTA button discoverability across
UIs, based on Post-Test Questionnaire responses.

buttons suffered from reduced engagement. Sparse fixations
in key interaction zones highlighted usability issues. The
model achieved 96.67% precision in identifying weaknesses
but only 65.85% for strengths, indicating its stronger
performance in detecting design flaws likely due to their
clearer deviation from standards.

Bad UI Variation

Figure 6: Bad variation of the Interface

The bad UI variation (Figure 6) was designed to intro-
duce severe usability issues by violating core design princi-
ples. In contrast to the good (Figure 2) and moderate (Fig-
ure 4) variations, this version intentionally disrupted layout
structure and interaction flow to assess how users respond to
poorly designed interfaces. A primary concern was the dis-
organised layout. Participant feedback reflected this clearly,
reporting a Net Promoter Score (NPS) of -32 for informa-
tion organisation. As shown in Figure 7, several users rated
the screen as highly cluttered, with three participants assign-
ing the maximum score of 10. These results emphasise the
critical role of visual structure in user navigation and sat-
isfaction. The system’s analysis supported participant feed-
back, revealing that while product images drew attention,
key interactive elements—such as navigation menus and
CTAs—suffered from low engagement due to poor contrast
and layout. Sparse fixations in expected interaction zones
suggested that users found the interface confusing and un-
predictable. The results highlighted issues like low-contrast
text, inconsistent spacing, and misaligned components, par-
ticularly noting reduced interaction with the ’See it in action’

Figure 7: Participant ratings on Screen Clutter for the Bad
UI. Question taken from (Chin, Diehl, and Norman 1988).

section and navigation bar. These findings stress the impor-
tance of WCAG-compliant (W3C 2023) readability and ef-
fective element positioning. The model demonstrated strong
performance in detecting flaws, achieving 96.97% precision,
compared to 75.61% for strengths — mirroring trends ob-
served in the moderate UI analysis.

Comparative Analysis between Variations
The comparative evaluation of the three UI varia-
tions—Good, Moderate, and Bad—revealed significant dif-
ferences in usability, as reflected in participant feedback,
eye-tracking data, and system-generated analyses.

User Preferences and Feedback Trends User prefer-
ences overwhelmingly favoured the Good UI, with 75% se-
lecting it as the most usable and 94% agreeing it made the
primary action (“Add to Basket”) easiest to find. It also re-
ceived the highest Net Promoter Score (NPS) for informa-
tion organisation (81), compared to the Moderate (44) and
Bad UI (-32). The Bad UI was rated least clear by 56.2%
of users. While the Moderate UI received mixed feedback,
some appreciated the upfront product details, though satis-
faction scores varied across navigation and clarity. Notably,
despite poor usability performance, one user still preferred
the Bad UI, and it received fewer complaints about screen
clutter than the Moderate UI, suggesting some users valued
information density over layout clarity.

Eye-Tracking Data and Heatmap Insights Fixation
heatmaps reinforced these findings. In the Good UI, users
exhibited focused gaze clustering around essential elements
such as the product image, title, rating, and ”Add to Basket”
CTA. Minimal erratic scanning indicated a well-structured
layout, allowing users to process information efficiently.
In the Moderate UI, increased gaze dispersion was ob-
served, particularly around low-contrast elements, suggest-



ing higher cognitive effort was required to locate key infor-
mation.
The Bad UI demonstrated highly scattered gaze patterns,
indicating a lack of visual hierarchy and excessive cogni-
tive strain due to poor layout structuring. Users frequently
shifted their focus across the page, struggling to find rele-
vant information.

System-Generated Analysis Performance CrewAI ef-
fectively identified key usability strengths across all UI vari-
ations. In the Good UI, it achieved high precision in de-
tecting strengths (94.12%) and moderate accuracy in spot-
ting weaknesses (66.67%), though it sometimes misclassi-
fied contrast and secondary content issues. For the Moderate
UI, it flagged contrast and spacing concerns but struggled
with subtle usability inefficiencies. The Bad UI prompted
accurate detection of major structural and navigation flaws.
Overall, results highlight the importance of clarity and struc-
tured content, with the Good UI offering the best balance,
and the Moderate UI providing insights for improving infor-
mation delivery without compromising usability.

Model and Report Evaluation This evaluation was con-
ducted by manually reviewing the output usability report and
verifying the identified strengths and weaknesses against
ground truth assessments of the interfaces. Additionally, sys-
tem runtimes were recorded for further analysis. The evalu-
ation was carried out across all models listed in Tables 2
and 3. During the usability study, GPT-4o was used for both
API analysis and crew evaluation. For the remaining mod-
els, heatmaps from the original experiment were reused as
input for both stages. This approach leveraged existing data
to avoid the computational and time costs of rerunning ex-
periments. To ensure consistency, all evaluation conditions
remained constant, with only the crew model and API anal-
ysis varying across models.

Proprietary Model Results During the evaluation, no-
table differences were observed across the proprietary mod-
els in terms of structured output adherence and consistency
in usability analysis. Claude 3.5 Sonnet struggled the most
with maintaining the required structured format, often gen-
erating an analysis for only one image instead of all three.
As a result, multiple experiments had to be rerun to ensure
a complete evaluation. In contrast, Pixtral Large 2411 dis-
played a pattern of repetition, consistently identifying the
same two strengths—placement of the product image and
the positioning of the product name and title—across all
UI variations, regardless of differences in design. This re-
sulted in a 100% precision score in strength detection (Fig-
ure ??), indicating high consistency but raising concerns
about adaptability to nuanced interface changes.
For weakness detection, Gemini 2.0 Flash outperformed oth-
ers with 96.8% precision, followed by GPT-4o (88.2%),
Claude 3.5 Sonnet (78.6%), and Pixtral (74.0%) (Figure ??).
While GPT-4o showed balanced performance, its slightly
lower strength precision (79.7%) suggests occasional misses
in identifying positive elements. Pixtral, though strong in de-
tecting strengths, lacked variation, suggesting over-reliance
on template responses. Claude, while fast, exhibited incon-

Figure 8: Proprietary Model Runtime vs Strength Precision
Comparison

sistency in both structure and content. Runtime analysis
showed that Gemini 2.0 Flash (42.35s) delivered the best
performance overall but was the slowest. Pixtral (40.75s)
achieved high strength precision through repeated patterns
rather than deeper analysis. GPT-4o and Claude were the
fastest (38.25s and 36.25s) but offered slightly lower preci-
sion in strengths (Figure 8). Similar trends held for weak-
ness detection, with Gemini again leading in precision (Fig-
ure 9). These findings suggest a trade-off between runtime
and precision. While Gemini 2.0 Flash offers superior reli-
ability, GPT-4o balances speed and accuracy well, making
it suitable for real-time evaluation. In contrast, Pixtral and
Claude were either overly repetitive or structurally inconsis-
tent, limiting their applicability in structured usability tasks.
This evaluation suggests that models with longer runtimes
tend to provide more accurate results, but efficiency and re-
liability should be considered when selecting a model for
real-time usability evaluation.

Figure 9: Proprietary Model Runtime vs Weakness Precision
Comparison

Local Model Results Three open-source models were
evaluated for their potential to support offline usability anal-
ysis: Gemma 3-4B, LLaVA v1.5-7B, and Granite Vision
3.2-2B. These models were tested locally via LMStudio un-
der the same experimental conditions as proprietary mod-
els. While LLaVA v1.5-7B appeared to perform better with
52.9% strength and 54.8% weakness precision, these figures
were based on just 5 successful runs out of 16 total experi-
ments (Table 4). Many runs failed or produced unclear out-
puts, and in some cases, LLaVA misinterpreted the heatmap
as a visual effect, exposing poor contextual understand-



ing. Gemma 3-4B frequently returned incomplete results
and achieved low precision overall (22.7%), particularly for
Good UIs (3.1% weakness precision) with the longest aver-
age runtime (290.5s). Granite Vision 3.2-2B failed entirely,
generating the same generic response in every case, with the
lowest runtime of the three (46s). These failures likely stem
from limited multimodal reasoning abilities and difficulty
in handling complex visual analysis tasks. Additionally, all
three models struggled with structured outputs, highlight-
ing the current limitations of smaller open-source models
for complex multimodal usability tasks.

Local Model Name No Output Unclear Out-
put

Gemma 3 0 0
LLaVA v1.5 5 11
Granite Vision 0 10

Table 4: Output Completeness Across 16 Local Model Ex-
periments

Comparative Summary Compared to proprietary mod-
els, the local open-source alternatives demonstrated signifi-
cantly reduced precision, consistency, and robustness. While
LLaVA showed promise in specific tasks, it lacked reliabil-
ity across all UI variations. Gemma produced inconsistent
outputs, and Granite failed to return usable results entirely.
In contrast, proprietary models — especially Gemini 2.0
Flash and GPT-4o — provided highly structured, accurate
evaluations with clear strengths in both precision and run-
time balance. These results underscore the trade-off between
accessibility and performance. While open-source models
hold potential for offline deployment in low-resource set-
tings, current limitations highlight the need for architectural
adjustments or fine-tuning to match the reliability of propri-
etary LLMs. Future work should focus on improving local
model integration to bridge this gap and enable sustainable,
internet-independent usability evaluation workflows.

Conclusion
This study was motivated by the need to streamline UI
evaluation for UI/UX practitioners by reducing the time-
intensive nature of traditional usability testing. Manual
assessments often require multiple iterations, limiting de-
signers’ capacity for creative problem-solving. To address
this, a full-stack system was developed that integrates
real-time eye-tracking with a multimodal agentic pipeline,
automating the analysis process to enhance both efficiency
and accuracy.
A key contribution was the transformation of qualitative
feedback into quantifiable precision metrics—allowing for
objective evaluation of interface effectiveness. The system
outperformed prior approaches like UIClip (Wu et al. 2024),
which suffered from high recall but low precision. By focus-
ing on precision, the study reduced irrelevant suggestions
and delivered more actionable feedback. Evaluation across
state-of-the-art LLMs demonstrated the system’s capability
to accurately detect usability strengths and weaknesses.

However, local deployment with smaller open-source
models revealed challenges—outputs were often incom-
plete, lacked structure, and exhibited misinterpretations
of heatmap data. This highlights the current limitations of
open-source models in complex multimodal tasks.
Several technical challenges also emerged. CrewAI’s
limited context window made it unsuitable for direct image
analysis, requiring preprocessing via an external API.
Another challenge was the performance of WebGazer’s
prediction point (the red dot indicating gaze position),
which exhibited noticeable lag. This may have been caused
by the computational load of real-time heatmap generation
alongside CrewAI processing. Furthermore, despite being
given a structured output format, responses from CrewAI
agents were not always consistent, particularly in the
placement of images within the generated reports and the
number of strengths/weaknesses outputted.
Future work will focus on refining the system architecture
to better support smaller, locally hosted models—critical
for deployment in low-resource environments where
cloud-based APIs are impractical. Additionally, further
optimisation of the MAS will be explored to ensure its full
capabilities are leveraged. There is also potential for this
system to be production-ready with further refinement. The
existing framework could be optimised and streamlined,
improving efficiency and scalability. As the system grows in
complexity, transitioning to more robust agentic frameworks
like AutoGen could provide better handling of multi-agent
interactions, larger context windows, and improved task
orchestration.
Another key direction for improvement is extending the
system to work with interactive prototypes rather than
just static UI images. While static UI evaluation provides
valuable insights, integrating usability testing with func-
tional interfaces would significantly enhance the system’s
applicability and accuracy, making it even more practical
for real-world UI/UX evaluation.
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nagar, S.; Panyam, S. R.; Eiger, S.; Zhang, S.; Liu, T.; Ya-
covone, T.; Liechty, T.; Kalra, U.; Evci, U.; Misra, V.; Rose-
berry, V.; Feinberg, V.; Kolesnikov, V.; Han, W.; Kwon, W.;
Chen, X.; Chow, Y.; Zhu, Y.; Wei, Z.; Egyed, Z.; Cotruta,
V.; Giang, M.; Kirk, P.; Rao, A.; Black, K.; Babar, N.; Lo,
J.; Moreira, E.; Martins, L. G.; Sanseviero, O.; Gonzalez,
L.; Gleicher, Z.; Warkentin, T.; Mirrokni, V.; Senter, E.;
Collins, E.; Barral, J.; Ghahramani, Z.; Hadsell, R.; Matias,
Y.; Sculley, D.; Petrov, S.; Fiedel, N.; Shazeer, N.; Vinyals,
O.; Dean, J.; Hassabis, D.; Kavukcuoglu, K.; Farabet, C.;
Buchatskaya, E.; Alayrac, J.-B.; Anil, R.; Dmitry; Lepikhin;
Borgeaud, S.; Bachem, O.; Joulin, A.; Andreev, A.; Hardin,
C.; Dadashi, R.; and Hussenot, L. 2025a. Gemma 3 Techni-
cal Report. arXiv:2503.19786.
Team, G. V.; Karlinsky, L.; Arbelle, A.; Daniels, A.; Nas-
sar, A.; Alfassi, A.; Wu, B.; Schwartz, E.; Joshi, D.; Kondic,
J.; Shabtay, N.; Li, P.; Herzig, R.; Abedin, S.; Perek, S.;
Harary, S.; Barzelay, U.; Goldfarb, A. R.; Oliva, A.; Wieles,
B.; Bhattacharjee, B.; Huang, B.; Auer, C.; Gutfreund, D.;
Beymer, D.; Wood, D.; Kuehne, H.; Hansen, J.; Shtok, J.;
Wong, K.; Bathen, L. A.; Mishra, M.; Lysak, M.; Dolfi, M.;
Yurochkin, M.; Livathinos, N.; Harel, N.; Azulai, O.; Na-
parstek, O.; de Lima, R. T.; Panda, R.; Doveh, S.; Gupta, S.;
Das, S.; Zawad, S.; Kim, Y.; He, Z.; Brooks, A.; Goodhart,
G.; Govindjee, A.; Leist, D.; Ibrahim, I.; Soffer, A.; Cox, D.;
Soule, K.; Lastras, L.; Desai, N.; Ofek-koifman, S.; Ragha-
van, S.; Syeda-Mahmood, T.; Staar, P.; Drory, T.; and Feris,
R. 2025b. Granite Vision: a lightweight, open-source multi-
modal model for enterprise Intelligence. arXiv:2502.09927.
van den Berg, L.; Engelsma, T.; and Peute, L. 2024. Explo-
ration of Eye-Tracking Methodologies in Usability Testing
of Digital Health Technology: A Rapid Review. Studies in
health technology and informatics, 316: 1130–1134.
W3C. 2023. Web Content Accessibility Guidelines
(WCAG) 2.2. Accessed: 17-Oct-2024.
Wang, J.; Antonenko, P. D.; Celepkolu, M.; Jimenez, Y.;



Fieldman, E.; and Fieldman, A. 2019. Exploring Relation-
ships Between Eye Tracking and Traditional Usability Test-
ing Data. International Journal of Human–Computer Inter-
action, 35: 483 – 494.
Wu, J.; Peng, Y.-H.; Li, X. Y. A.; Swearngin, A.; Bigham,
J. P.; and Nichols, J. 2024. UIClip: A Data-driven Model
for Assessing User Interface Design. In ACM Symposium
on User Interface Software and Technology.
Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Zhang, S.; Zhu, E.; Li,
B.; Jiang, L.; Zhang, X.; and Wang, C. 2023a. AutoGen: En-
abling Next-Gen LLM Applications via Multi-Agent Con-
versation Framework. ArXiv, abs/2308.08155.
Wu, S.; Fei, H.; Qu, L.; Ji, W.; and Chua, T.-S.
2023b. NExT-GPT: Any-to-Any Multimodal LLM. ArXiv,
abs/2309.05519.
Xu, P.; Ehinger, K. A.; Zhang, Y.; Finkelstein, A.; Kulka-
rni, S. R.; and Xiao, J. 2015. TurkerGaze: Crowdsourc-
ing Saliency with Webcam based Eye Tracking. ArXiv,
abs/1504.06755.
Zelinskyi, S.; and Boyko, Y. 2024. Integrating session
recording and eye-tracking: development and evaluation of
a Chrome extension for user behavior analysis. Radioelec-
tronic and Computer Systems.
Zhan, J.; Dai, J.; Ye, J.; Zhou, Y.; Zhang, D.; Liu, Z.; Zhang,
X.; Yuan, R.; Zhang, G.; Li, L.; Yan, H.; Fu, J.; Gui, T.;
Sun, T.; Jiang, Y.; and Qiu, X. 2024. AnyGPT: Unified
Multimodal LLM with Discrete Sequence Modeling. ArXiv,
abs/2402.12226.


