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Abstract

As cyberphysical systems become increasingly autonomous,
it must be assured that their behaviour is aligned with hu-
man values. Insights from Social Science reveal that human
value systems depend on context. In this extended abstract
we introduce a representation for contextual value systems
and propose a model for learning them from examples.

Introduction

The value alignment problem (Russell 2022) states that de-
cisions taken by Al systems must obey ethical principles and
human values. A way to achieve this is to endow them with
explicit representations of human values and value reason-
ing abilities. Context dependency is key in such value-aware
Al systems (Osman and d’Inverno 2024): e.g., the impor-
tance of the values of “privacy” and “efficiency” may vary
when evaluating the same alternative in different contexts.
Given the difficulty of modelling values manually, ap-
proaches like Axies (Liscio et al. 2021) and moral
value detection (Rink, Lobachev, and Vorontsov 2024) ap-
ply context-sensitive value learning through text analy-
sis but cannot reason about value preferences. The work
by (Holgado-Sanchez et al. 2025) can infer value repre-
sentations and value systems (value preferences) as re-
ward functions using inverse reinforcement learning (Ng
and Russell 2000), but does not account for context de-
pendency in these representations. The contribution of this
paper is twofold: it extends the aforementioned framework
with context-sensitivity, and presents the architecture of a
computational framework for context-based value learning.

Representing context-based value systems

We set out from a set of m values V = {v1,...,v,,} in an
environment with a set of decision alternatives called enti-
ties E/. Each entity e € FE is described by a feature vector
¢(e) € P. For example, values that guide decision-making
in route choice (Prato 2009) may include ecology and se-
curity, entities to choose from are the alternative routes,
and features include route length or average speed. A value
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v € V acquires a particular meaning by grounding it in envi-
ronment features. Value alignment functions allow for com-
puting the level of alignment of alternatives with values:

Definition 1 (Value alignment function/Grounding)
Given a value v, the function A, : E — R is a value
alignment function for v. Then, the grounding for V,
Gy :E—-R"isGy = (Ay,,..., Ay, ) in E.

In our route choice example, the grounding of the value
ecology may refer to the expected C'O2 consumption of a
certain route e, that can be estimated from the features route
length and average speed. While we assume that groundings
are socially-agreed upon in a society, each agent j may hold
its own value system. We model the latter as a preference
relation <; ¢, over entities in & based on a grounding G'v.
Furthermore, we characterise a context c by a series of fea-
tures ¢(c) € U that influence agent preferences. E.g, a con-
text may comprise features that determine whether a route is
to be chosen for a leisure or for a business trip.

Definition 2 (Contextual value system) Ler Gy a ground-
ing. The contextual value system of an agent j is a mapping
from contexts to value systems: V Sj c, (¢) = {<5.a, }-

Contextual value system functions are defined by impor-
tance weights for each value v; based on which, for each
context, the degrees of alignment of an entity e with v;
are linearly aggregated, so as to represent the correspond-
ing value system.

Definition 3 (Contextual value system function) Ler
VSja, be the contextual value system of agent j.
The function A;c, : C x E — R is the contextual
value system function of j assuming the grounding
Gy, defined as Ajc,(c,e) = WF - Gy(e), where
We = (wi'(c),...,wjm™(c)) represents the value weights
reflecting j’s value system at context ¢ € C.

As in previous work, we assume that the weights W; are
restricted to [0, 1]™ and that their sum across values is 1, so
that agents cannot be opposed to the promotion of a value or
be completely unaware of all of them.

With this representation model we can redefine the value
system learning problem (Holgado-Sanchez et al. 2025),
adapting for context-dependency.

Definition 4 (Contextual value system learning) v = The
contextual value system learning problem consists of (i)
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Figure 1: The proposed architecture applicable to learning agent-specific and context-based value systems.

inferring a socially-agreed grounding Gy : E — R™
that estimates value alignment, and (ii) learning a con-
textual value system function Aj ., CxFE — R
for each agent j € J based on Gy, which reduces to
finding the corresponding contextual value system weights
We e [0,1]™.

Contextual value system learning architecture

In this section, we describe our second contribution: an ar-
chitecture for contextual value system learning. It consists of
two modules. The first module (Figure 1, left) features the
model G{{} : & — R™ that represents the socially-agreed
grounding Gy and is based on the entity features ®. The
second module (right) is agent-specific (for each j € J) and
also context-dependent, as it includes the learnable model
Wj‘I’ : U — [0,1]™ that estimates the weights W¢ from
the features of the context c. Then, with the linear combina-
tion of the weights and the groundings, an estimation of the
contextual value system alignment function of the agent is
derived: Aj ay (c,e) = W (¥(c)) - GV (d(e)).

While the context feature space can be infinite or dense,
the space of possible contextual value systems should not, at
least for a human. E.g., if the time of day is a context fea-
ture, Wj‘l’ might assign different weights at 9:00 AM than
at 9:01 AM. To prevent these unreasonable predictions, we
suggest limiting the number of contexts that trigger differ-
ent value systems and, if possible, make the relationship be-
tween contexts and value system interpretable. To do so, we
suggest implementing clustering (Chakraborty et al. 2024),
rule-based (Veronese et al. 2024) or meta-heuristic (Bruns,
Dunkel, and Seremet 2023) approaches in the contextual
value system model architecture.

Given the architecture, we propose a learning setting
to ground Definition 4. Let an environment in which
for each agent j € J we observe a dataset D; =
{(ex, €}, yi, ck) He . where y! € [0, 1] captures j’s rela-
tive preference for entity e; over e at context ¢; accord-
ing to j’s value system. Consider also another dataset from
domain experts, namely, Dy = {(es, €}, 4", ..., y;*) -,
where 3¢ € [0,1]! is the annotated degree of preference of
e; over e} regarding their alignment with value vy,.

'Though they are defined generally as quantitative measures in
[0,1], both y,* and y] may represent qualitative preferences if they
are restricted to {0,1.0,0.5}, to indicate that e; is preferred over
e, the inverse relation, or indifference, respectively.

Additionally, let L2 (Dv) and Ly v g2 (D;) be two loss
J

functions. The first measures the error of approximating y**
from G (e), and the second, the error of approximating v’
from Ajay (c,e) = WY (ah(c)) - GY(¢(e)). Minimizing
these two losses in a structured way (Definition 5), we ob-
tain optimal models (G7,)* and (W,¥)* that maximally rep-
resent the preferences in the datasets, solving the two tasks
from Definition 4. To define these losses, inspiration can be
taken from RLHF (Christiano et al. 2017).

Definition 5 The contextual value system learning prob-
lem consists of solving the bi-level optimization problem:
(Wj‘p)* = arg min Z Lyyv gzy-(D;)
wi o Ger
subjectto  (Gy)* € arg rglin Lgs (Dy).
\%4

Approaching this bi-level optimization problem requires
prioritizing approximating the value dataset Dy over the
value system ones D;. To do that, and assuming differen-
tiable loss functions and learning our models through gra-
dient descent, we can use a weighting factor A > 0 to treat
the loss £ Gb asa soft constraint and minimize a global loss
L(Dj;Dv) = > jes Lwr )~ (Pj) + ALgz (Dv). Itis
also possible to estimate a suitable value for A during opti-
mization (Cotter, Jiang, and Sridharan 2019). An alternative
to differentiable approaches could be techniques from the
field of operations research, employed in the related prob-
lems of finding maximally-aligned normative systems (Ser-
ramia et al. 2018) and aggregating value-based preferences
of multiple agents (Lera-Leri et al. 2022).

Applicability and future work

The proposed approach will allow us to estimate the value
system of new agents, recommend alternatives for custom
preference weights, or predict agent preferences in simu-
lated contexts. Potential application domains include route
choice (Zhao and Liang 2023) or value-aware recommender
systems (De Biasio et al. 2023).

In future work, we will implement and evaluate the pro-
posed architecture with real-world datasets on route choice,
extending synthetic experiments in (Holgado-Séanchez et al.
2025). This will require extending the context model to
sequential decision-making. Other challenges include the
recognition of trends in the diverse value systems of a
full society of agents, and support for heterogeneous value
groundings (context or agent-based).
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