
Blockchain-Enhanced Machine Learning for Dynamic Routing and Secure
Communications in Autonomous Vehicle Networks

Usama Arshad1,2, Abdallah Tubaishat3, Abrar Ullah4, Zahid Halim2, Sajid Anwar5

1CRADLE Lab, FAST School of Management, National University of Computer and Emerging Sciences, Islamabad, Pakistan
2Department of Information Management, National Yunlin University of Science and Technology, Douliou, Yunlin 64002,

Taiwan
3College of Technological Innovation, Zayed University, UAE

4School of Mathematical & Computer Sciences, Heriot-Watt University, Dubai, UAE
5Center of Excellence in Information Technology, Institute of Management Sciences, Peshawar, Pakistan

usama.arshad@isb.nu.edu.pk, Abdallah.Tubaishat@zu.ac.ae, a.ullah@hw.ac.uk,
zahidh@yuntech.edu.tw, sajid.anwar@imsciences.edu.pk

Abstract

The advent of autonomous vehicles (AVs) marks a signif-
icant milestone in urban transportation, promising to en-
hance safety, reduce congestion, and improve environmen-
tal sustainability. However, deploying AVs on a mass scale
comes with critical challenges related to secure and effi-
cient vehicular communication. This research proposes a
novel framework that combines the security features of
blockchain technology with the adaptive capabilities of ma-
chine learning (ML) to address these major challenges. In-
tegrating a blockchain-based protocol ensures tamper-proof
and transparent communication within AV networks, protect-
ing against a wide array of cyber threats. Concurrently, ML
algorithms are employed to optimize real-time routing deci-
sions based on comprehensive traffic data and environmen-
tal conditions. Through simulation in realistic urban scenar-
ios, our framework demonstrates a significant improvement
in communication security and routing efficiency, indicat-
ing a promising avenue for achieving scalable and reliable
AV networks. Operational cost assessments further reveal the
economic viability of the proposed model, underscoring its
potential to deliver long-term savings through enhanced ef-
ficiency and reduced human intervention. Thus an efficient
solution in terms of security, dynamic routing, and scalability
with respect to traditional models.

Introduction
The rise of autonomous vehicles (AVs) is reshaping the land-
scape of urban transportation, presenting a future where the
way we commute is fundamentally transformed (Zhao et al.
2023). Due to its ability to go from one location to another
without requiring human assistance, research suggests that
autonomous cars present a new mobility paradigm (Rahman
and Thill 2023). The concept of a transportation mode iden-
tifies and addresses a number of the main issues that arise
in urban transportation systems, such as traffic jams and ac-
cidents caused by human error as well as the environmental
impact of emissions (Orieno et al. 2024). Due to their ad-
vanced sensors and intricate algorithms, autonomous cars
are able to make judgments quickly, adapt to changes in
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their environment, and thrive in urban areas. Autonomous
cars are expected to lessen traffic bottlenecks when they
are deployed in cities because they will be able to interact
with one another to improve traffic management (Alhaj et al.
2023). This potential for synchronized movement can lead to
smoother rides and less time spent on the road. Furthermore,
by removing the possibility of human error, which is respon-
sible for a significant portion of road accidents, AVs could
drastically improve road safety (Sohail et al. 2023). Envi-
ronmental sustainability is another critical area where AVs
could make a significant impact. With the potential to be
powered by clean energy sources and optimized for fuel ef-
ficiency through intelligent routing, AVs could contribute to
a reduction in carbon emissions and urban air pollution (Du-
man et al. 2023). This follows global actions striving to fight
climate change and encourage a healthier lifestyle among
citizens of large cities. Nevertheless, the use of AVs in ur-
ban transportation creates a series of adverse issues. This
includes the necessity to utilize unique communication sys-
tems and ensure the timely transfer of data (Laghari et al.
2023). It is essential for a proper operational pattern of AVs,
as they are programmed to collect and process information
on their surroundings at all times. Moreover, the security
of these communication systems is crucial. As AVs depend
heavily on the exchange of data, they are potentially vul-
nerable to cyber threats that could compromise the safety
and privacy of passengers (Yoshizawa et al. 2023). Unau-
thorized access or manipulation of vehicular data could lead
to severe consequences, highlighting the need for robust se-
curity measures (Wu et al. 2023). The dynamic nature of
urban environments poses a constant challenge, requiring
real-time data sharing for navigation and safety. Traditional
systems struggle to keep up, leading to inefficiencies and
potential safety risks (Novak and Ivanov 2023). As vehi-
cles increasingly rely on digital communication, they be-
come prime targets for cyber-attacks. Data manipulation and
unauthorized access can severely compromise the safety and
privacy of passengers, making robust security protocols non-
negotiable (Anwar et al. 2023). Moreover, ensuring reliable
connectivity in dense urban areas, where signal interference
and physical obstructions are common, remains a daunting
task. This can disrupt the flow of critical data between vehi-



cles and infrastructure, affecting decision-making processes
and overall traffic management (Tian et al. 2023). Lastly, the
integration of AVs into existing road networks requires ve-
hicular communication systems to adapt to a mix of human-
driven and autonomous vehicles. Achieving seamless com-
munication in such mixed traffic conditions is essential for
safety and efficiency but remains a complex issue to address.

Gaps in Current Research
While previous works have laid a solid foundation in the
fields of vehicular communication systems, blockchain tech-
nology in AV networks, and ML applications for dynamic
routing, several gaps remain unaddressed:
• Research on blockchain and ML integration for enhanc-

ing both security and routing in AV networks is sparse,
with most studies not exploring the synergistic benefits
of combining these technologies.

• Scalability and the need for computational efficiency in
blockchain and ML applications within AV networks are
often underexplored, hindering real-time performance in
urban settings.

• Comprehensive security models leveraging blockchain
for AV network data exchanges, covering privacy, in-
tegrity, and cyber threat resistance, remain undeveloped.

• Existing studies fall short in addressing AV integration
challenges within mixed-traffic urban environments, crit-
ical for achieving seamless communication and AV adop-
tion.

In response to these challenges, our study introduces a
novel approach that combines the strengths of blockchain
technology with machine learning (ML). Blockchain offers
a secure and transparent platform for vehicular communi-
cation, ensuring the integrity and confidentiality of data ex-
changed within AV networks. Its decentralized nature makes
it resistant to tampering and unauthorized access, providing
a solid foundation for secure communications. Simultane-
ously, ML algorithms are employed to enhance the dynamic
routing capabilities of AVs. By analyzing vast amounts of
traffic data and environmental conditions in real time, ML
enables AVs to make optimized routing decisions, further
improving traffic flow and reducing travel times.

Main contributions and novelty
• We introduced a framework integrating blockchain with

ML for secure, efficient AV network routing, en-
abling tamper-proof communications and real-time, data-
informed decisions.

• Blockchain ensures our framework’s security and trans-
parency, safeguarding against cyber threats and unautho-
rized data access, crucial for AV technology acceptance.

• ML algorithms in our framework adaptively optimize
routing based on live traffic and environmental data,
significantly enhancing traffic flow and reducing travel
times.

• Addressing scalability, our approach proves viable for
large-scale urban deployment, maintaining real-time per-
formance through optimized blockchain protocols and al-
gorithms.

• Designed for mixed traffic conditions, our framework
supports both autonomous and human-driven vehicles,
promoting smoother integration into evolving urban mo-
bility landscapes.

Proposed Model
Framework Overview
The dawn of autonomous vehicle (AV) technology intro-
duces transformative potential for urban mobility, aiming to
significantly enhance road safety, traffic efficiency, and en-
vironmental sustainability. However, the realization of this
potential is dependent upon overcoming substantial chal-
lenges in vehicular communication and routing. Current sys-
tems face threats from cybersecurity risks and dynamic traf-
fic conditions, which compromise the safety and efficiency
of AV operations. To address these challenges, our research
proposes an innovative framework that integrates blockchain
technology with machine learning (ML) algorithms within
AV networks. The essence of this integration lies in harness-
ing blockchain’s unparalleled security features for vehicular
communication and leveraging ML’s capability to adapt and
optimize routing decisions in real time.

Theoretical Foundation The proposed framework oper-
ates on two fundamental premises:

• Blockchain Technology for Secure Communication: Uti-
lizing a decentralized ledger system, blockchain technol-
ogy ensures the integrity and privacy of data exchanges in
AV networks. Let B denote the blockchain system, where
each transaction and data exchange is recorded as a block
bi ∈ B. These blocks are linked using cryptographic prin-
ciples, ensuring a secure and tamper-proof chain.

bi = encrypt(datai, keyi−1) (1)

where datai is the information transmitted in block i, and
keyi−1 is the cryptographic link to the previous block.

• Machine Learning for Dynamic Routing: The framework
employs ML algorithms to analyze traffic data D, pre-
dicting patterns and optimizing routes for AVs in real
time. The function f : D → R represents the ML model
that maps input data to optimal routing decisions, where
R is the set of possible routes.

Ropt = argmin
r∈R

Cost(r,D) (2)

Cost(r,D) evaluates the efficiency of route r based on
current traffic data D, selecting the route with minimal
associated cost.

The goal of this framework is to enhance the secure com-
munication and dynamic, efficient routing capabilities of AV
networks, addressing critical challenges and setting the stage
for a new era of urban mobility. Through this integrated ap-
proach, we aim to achieve a seamless, secure, and efficient
transportation system, paving the way for the widespread
adoption of AV technology in urban environments.



Table 1: Comparison - Proposed Model vs Previous Models

Ref. Data Pro-
cessing

Verification Pattern
Analysis

Security Decentralized
Tech

Dynamic
Routing

Decision
Making

Adaptive
Net-
work

(Han et al.
2023)

✓ ✓ X ✓ X X X X

(Anbalagan
et al.
2023)

✓ ✓ X ✓ X X X X

(Yao et al.
2023)

✓ ✓ ✓ ✓ X X ✓ ✓

(Feng
et al.
2023)

✓ ✓ X ✓ ✓ X X X

(Ali et al.
2023)

✓ X ✓ X X ✓ ✓ ✓

Proposed
Model

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 1: Proposed Architecture.



Decentralization and Data Integrity
The decentralized nature of blockchain eliminates the need
for a central authority, thereby reducing vulnerabilities to
single points of failure and potential security breaches. In
a blockchain network, each participant, or node, holds a
copy of the ledger, contributing to the system’s resilience
against tampering and cyber-attacks. Data integrity is main-
tained through cryptographic hash functions, which ensure
that each block is securely linked to its predecessor. This
linkage creates an immutable chain of blocks, where altering
the information in any single block would require chang-
ing all subsequent blocks, a feat practically impossible to
achieve without detection. The mathematical representation
of this concept is as follows:

H(bi) = hash(H(bi−1) + datai + noncei) (3)
where H(bi) is the hash of block i, H(bi−1) is the hash of

the previous block, datai represents the information stored
in block i, and noncei is a nonce value that, when hashed
with the previous block’s hash and the block’s data, meets
the network’s difficulty target.

Transparency and Security
The transparency feature of blockchain allows all partici-
pants of the network to verify and audit transactions inde-
pendently. This promotes trust between the entities in the
AV ecosystem. In addition, blockchain’s transparency and
the security provided by its nature build strong protection
against various cyber threats, including data manipulations
and unauthorized access. Another security-enhancing mech-
anism is the use of consensus algorithms to verify transac-
tions and reach an agreement of all nodes on the state of
the ledger. Such popular consensus mechanisms as Proof of
Stake provide security for the blockchain network and allow
everybody to have a vote in approving transactions, which
makes the entire system more secure and resistant to attacks.

Valid(bi) =
{
1, if H(bi) < target
0, otherwise

(4)

where Valid(bi) determines the validity of block i based
on whether its hash is below a certain target.

Dynamic Routing
Machine learning (ML) algorithms have emerged as an im-
portant technology in the development of dynamic routing
systems for autonomous vehicle (AV) networks. By leverag-
ing real-time traffic data and environmental conditions, ML
algorithms facilitate the optimization of routing decisions,
thereby enhancing travel efficiency and mitigating conges-
tion. The core of ML-driven dynamic routing lies in its abil-
ity to process and analyze vast amounts of data from various
sources, including traffic sensors, GPS devices, and environ-
mental monitoring systems. This data encompasses a wide
range of parameters such as vehicle speed, traffic volume,
road conditions, and weather patterns. The function F , rep-
resenting an ML model, processes this data to predict traffic
conditions and determine optimal routes as follows:

Ropt = F(x; θ) (5)

where x represents the input data (e.g., current traffic and
environmental conditions), θ denotes the parameters of the
ML model, and Ropt is the output representing the optimal
route.

Optimization and Adaptation of Routing Decisions The
objective of ML algorithms in this context is to minimize
travel time and avoid congestion by dynamically adjusting
routing decisions based on predicted traffic patterns. This
is achieved through the optimization of a cost function C,
which evaluates the efficiency of a given route based on sev-
eral criteria, including travel distance, expected traffic de-
lays, and environmental factors:

min
R
C(R;x, θ) = Travel Time(R) + λ · Congestion(R;x)

(6)
whereR represents a set of possible routes, Travel Time(R)
calculates the estimated travel time for route R,
Congestion(R;x) assesses the expected level of con-
gestion based on current data x, and λ is a weighting factor
that balances the importance of minimizing travel time
against avoiding congested routes. To enhance the accuracy
of traffic predictions and routing optimizations, ML models
employ adaptive learning techniques that continuously
update the model parameters θ based on new data. This
iterative process ensures that the routing system remains
responsive to changing traffic conditions and environmental
factors, thereby improving the reliability and efficiency of
AV navigation over time.

θnew = θold − α∇θC(R;x, θ) (7)

where α is the learning rate, and ∇θC represents the gra-
dient of the cost function with respect to the model param-
eters, guiding the update process to minimize routing ineffi-
ciencies.

System Architecture and Data Flow
The system architecture comprises three main components:
the blockchain network, the machine learning module, and
the data management layer. These components interact to
form an integrated system that addresses the challenges of
security and routing efficiency in AV networks.

• Blockchain Network: Serves as the backbone for secure
data exchange among AVs and infrastructure, storing
transactions and data exchanges in an immutable ledger.

• Machine Learning Module: Analyzes real-time traffic
data and environmental conditions to optimize routing
decisions, continuously learning and adapting to chang-
ing patterns.

• Data Management Layer: Facilitates the collection, stor-
age, and distribution of data between the blockchain net-
work and the ML module, ensuring data integrity and
availability.

Data flow within the integrated system follows a struc-
tured path, ensuring that information is effectively captured,
processed, and utilized:



1. Data Collection: Traffic data, environmental conditions,
and vehicular communications are collected through sen-
sors and IoT devices, and then transmitted to the data
management layer.

2. Data Storage and Sharing: Collected data is stored in the
data management layer, where it is pre-processed and
made available for both the blockchain network and the
ML module. Blockchain technology ensures that shared
data remains secure and tamper-proof.

3. Data Processing and Analysis: The ML module accesses
real-time data to perform analysis and generate routing
decisions. This process involves data-driven algorithms
that predict traffic patterns and identify optimal routes.

4. Decision Implementation: Routing decisions are commu-
nicated back to AVs and relevant infrastructure through
the blockchain network, ensuring that the information is
securely and efficiently distributed.

The interaction between the blockchain network and the
ML module is mediated by the data management layer,
which ensures that data integrity and security are maintained
throughout the process. This layered architecture allows for:

SecureDataExchange(Db) = encrypt(Dm,Kb) (8)

where Db represents data for the blockchain, Dm denotes
data from the ML module, and Kb is the encryption key,
ensuring secure data exchange between components.

RoutingDecision(Ropt, Dm) = F(Dm; θ) (9)

where Ropt is the optimal routing decision, Dm is the input
data from sensors, and θ represents the parameters of the ML
model.

Implementation details
The Algorithm 1 describes the brief implementation details.
The simulations and results were produced using Python on
a device with a Core-I7 12 Generation processor and 16 GB
RAM. Remix IDE is used for testing different scenarios. The
decision tree is used as an ML model for predictions and dy-
namic routing on the dataset (Žunić 2019) for testing sce-
narios. However, simulation data was used for the results.

Algorithm 1: Algorithm for Secure and Efficient AV Net-
work Communication
V ← Set of vehicles, S ← Set of sensors, R ←
Set of routes Optimized route assignments Ropt

for vehicles B ← Initialize blockchain network
M ← Initialize ML model for traffic prediction
L ← Initialize ledger v ∈ V dv ←
Collect data from vehicle v Store dv in L using B
D ←

⋃
s∈S ds d ∈ D B.validate(d)

P ← M.predict(D) v ∈ V Ropt ←
Optimize(P, v,R) Assign routeRopt to vehicle v
F ← Collect feedback from all v ∈ V M.update(F)
returnRopt

Simulations and Results
The results of our simulations and analyses reveal signifi-
cant improvements across several key metrics for the pro-
posed model, which integrates blockchain technology and
machine learning (ML) for enhanced communication secu-
rity and dynamic routing in autonomous vehicle networks.

Communication Security
Fig. 2 demonstrated that the proposed model significantly
enhances communication security, with the number of suc-
cessful secure transactions steadily increasing to a near-
perfect success rate of 99.8%. This is in contrast to the ex-

Figure 2: Communication Security.

isting model, which plateaued at a success rate of 96% in
specific scenarios. Additionally, the proposed model proved
highly effective in detecting and thwarting unauthorized ac-
cess attempts, showcasing its superior security capabilities
against potential cyber-attacks and data breaches.

Dynamic Routing Efficiency
The efficiency of the proposed model in computing optimal
routes under various traffic conditions was markedly supe-
rior as shown in Fig. 3. It consistently required less time
to compute routes across all levels of traffic, particularly ex-
celling in heavy traffic scenarios. Moreover, the implementa-

Figure 3: Dynamic Routing Efficiency.

tion of the proposed model resulted in a noticeable reduction



in average travel times, up to 20%, underscoring the model’s
effectiveness in improving traffic flow and minimizing con-
gestion.

Scalability
Simulations on scalability represented by Fig. 4 demon-
strated the proposed model’s robust performance in accom-
modating increased loads, scaling effectively with the ris-
ing number of vehicles and transactions. System throughput

Figure 4: Scalability.

for the proposed model significantly outpaced that of the
existing model, particularly under higher load conditions.
Furthermore, resource utilization metrics indicated more ef-
ficient use of computational and network resources by the
proposed model as the system scaled, affirming its scalabil-
ity and efficiency.

Operational Cost
Comparisons of operational costs in Fig. 5 revealed the pro-
posed model’s ability to lower expenses over time, which
in turn enhanced infrastructure efficiency, maintenance sav-
ings, and reduced energy consumption. A cost-benefit analy-

Figure 5: Operational Cost.

sis further highlighted the long-term financial advantages of
the proposed model, showing net savings that far exceeded
those of the existing model, primarily due to improved effi-
ciency and reduced necessity for human intervention.

Conclusion
The integration of blockchain and machine learning (ML)
technologies into autonomous vehicle (AV) networks rep-
resents a significant technological advancement in enhanc-
ing communication security, dynamic routing efficiency, and
scalability. Our study’s simulations have clearly demon-
strated the proposed model’s superior performance across
these critical areas when compared to existing models. The
model establishes a new benchmark in communication se-
curity with a near-perfect success rate in secure transactions
and a marked improvement in handling unauthorized access
attempts. Additionally, the efficiency gains in dynamic rout-
ing, evidenced by reduced computation times and travel du-
rations, highlight the model’s capability to optimize traffic
flow and minimize congestion, even under varying traffic
conditions. The scalability analysis further underscores the
model’s robustness in handling increased loads, showcas-
ing its potential to accommodate the growing demands of
smart transportation systems without compromising perfor-
mance. Moreover, the operational cost assessment reveals
the model’s economic viability, with significant long-term
savings achieved through enhanced efficiency and reduced
human intervention. In conclusion, this study affirms the in-
tegration of blockchain and ML as a promising approach
for advancing AV networks. By addressing the current lim-
itations of vehicular communication systems, the proposed
model not only enhances the security and efficiency of AV
networks but also paves the way for future research and de-
velopment. It invites a broader exploration into smart trans-
portation solutions, with the potential to revolutionize urban
mobility in the coming years.
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