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Abstract

Crochet, with its rich history and popularity, provides a cre-
ative and therapeutic outlet for millions across the globe, from
many walks of life. However, crochet pattern creation and
modification can be challenging for novice users, due to the
spatial reasoning and structural understanding of stitches re-
quired. CrochetPARADE is a tool created to ease this process
through pattern visualisation, but it uses a syntax that differs
from standard notation and may not be intuitive to the aver-
age crocheter. This study explores the use of Large Language
Models (LLMs) to translate user-generated crochet patterns
into the CrochetPARADE syntax. The first structured, open-
source collection of crochet patterns designed for machine
learning applications was created, comprising user-generated
patterns and their corresponding CrochetPARADE transla-
tions. Various approaches, including baseline, few-shot, and
fine-tuning techniques, were evaluated with LLMs. The best
results were achieved with fine-tuning DeepSeek-R1-Distill-
Llama8b, reaching 74% accuracy, which has the potential to
significantly improve the accessibility and ease of crochet
pattern creation for users with varying levels of expertise.

Introduction
Crochet, a fibre art dating back to the 19th century, involves
creating fabric swatches by interlocking yarn loops with a
single hook (see Figure 1). Originally introduced in Ireland
as a measure of famine relief (Britannica 2024), the craft has
grown to over 28.8 million users in the USA alone, and spans
a rather large demographic (AFCI 2016). As a result, cro-
chet patterns (instructions to create crocheted items, as seen
in Figure 3) are in abundance. Though these patterns are rel-
atively easy to follow, translating this knowledge to create
new patterns can be a difficult and daunting task for novice
crocheters. This is due to the spatial reasoning required to vi-
sualise the shapes formed by crochet stitches, and an under-
standing of how the stitch structure can vary when created
on top of another. There are attempts to simplify this pro-
cess by introducing tools such as CrochetPARADE, a cro-
chet pattern renderer, analyser and debugger. This software,
however, uses a syntax that differs from a standard crochet
pattern and may not be intuitive to an average crocheter. The
aim of this project was to translate a user’s crochet pattern to
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the syntax used by CrochetPARADE, to aid with standardi-
sation and visualisation of the pattern.

Figure 1: Process of creating a crochet stitch

Motivation
Beyond a hobby, crochet impacts personal wellness, social
support, and microeconomics. It is also portable and low-
cost (Burns and Van Der Meer 2020), making it accessible
to individuals and broader communities. An international
survey by Burns and Van Der Meer (2020) found that 89.5%
of respondents felt calmer after crocheting, 82% experi-
enced increased happiness, and 74.7% felt more productive.
Many used crochet to manage mental health, grief, chronic
illness, and pain. On a larger scale, the crochet community
supports those in need. Organisations like Saaisha craft
handmade breast prostheses and beanies for women and
children undergoing cancer treatment, distributing 19,318
prostheses and 2,215 beanies as of September 2024 (Saaisha
2024). Crochet also enables financial independence, espe-
cially in areas with high unemployment. Iota, a sustainable
furniture brand, trains women to crochet and offers jobs to
help them gain autonomy (Peng 2024).

With such a significant impact worldwide, we seek to
enable users to concentrate more on the creative process,
rather than the repetitive manual work involved in crochet
pattern creation and modification. This project, more
specifically, aimed to:

• Create a dataset of user crochet patterns and manually
translated CrochetPARADE patterns.

• Evaluate Large Language Models (LLMs) for translat-
ing crochet patterns into CrochetPARADE syntax using
baseline testing and few-shot learning approaches.

• Fine-tune the selected LLMs on the created crochet pat-
tern dataset.



Figure 2: Comparison of patterns: Natural Language Pat-
tern with corresponding item (left), CrochetPARADE pat-
tern with corresponding visualisation (right)

• Establish a strategy to evaluate model outputs for syntac-
tic accuracy and pattern correctness.

• Conduct a final evaluation based on the framework to as-
sess pattern translation.

Background

In this section, we formalise crochet patterns, introduce the
CrochetPARADE software and its role in our project, and
discuss developments with Machine Translation with a focus
on the transformer architecture and Large Language Models
(LLMs). We then criticise related works in the field and draw
comparisons between them.

Crochet Patterns

Crochet patterns serve as essential guides, offering in-
structions to crocheters that are often divided into rows of
interconnected stitches. However, crochet patterns for the
same output item can be written in several ways, varying
significantly in the skill level they are tailored to. More
detailed patterns explicitly indicate stitch placement and
provide full stitch names, while compact patterns rely on
abbreviations and assume familiarity with techniques like
turning, chains and stitch repetitions.

This variation presents specific challenges in pattern
interpretation. Abbreviations and terminology can vary
between pattern designers, with the same terms sometimes
indicating different techniques. More complex instructions
combine multiple operations in condensed formats, such
as ”[sc, ch1] 5 times”. Despite these differences, the core
structure of a pattern revolves around stitch types and
their repetition counts. However, correctly following these
instructions depends on recognising abbreviations and
interpreting how condensed phrases expand into physical
stitches.

Figure 3: Comparison of equivalent crochet patterns written
in natural language

CrochetPARADE and its Capabilities
The CrochetPARADE tool (Tassev 2023) enables users to
create, visualise, and analyse crochet patterns in both 2D
and 3D using a specialised grammar similar to a program-
ming language. This ensures precision and avoids ambigui-
ties common in plain English instructions. The code parses
patterns for correctness, creates a virtual model, and renders
it in 3D (see Figure 2). Users can interact with the model,
adjusting rotation, zoom, yarn thickness, and color. The tool
also supports exporting patterns and their output in formats
such as plain text, SVG, and 3D files compatible with soft-
ware like Blender (Tassev 2023). By incorporating pattern
translation into the CrochetPARADE grammar, this highly
useful tool could greatly increase its reach by eliminating
the learning curve associated with using it. This task falls
into the field of Machine Translation (MT), which focuses
on using technology to automatically convert information
from one format or language to another.

Large Language Models (LLMs)
MT breaks down language barriers on a global scale,
enabling smoother communication and greater access to
information (Benmansour and Hdouch 2023). Transformer-
based models such as BERT (Bidirectional Encoder
Representations from Transformers), GPT (Generative Pre-
trained Transformers), and more recently LLaMA (Large
Language Model Meta AI), have introduced new levels of
understanding, generation, and translation across a wide
range of natural and formal languages (Zaki 2024).
BERT takes advantage of unsupervised pre-training with a
bidirectional architecture, and so by analysing text in both
directions, the model is able to tackle a large variety of
Natural Language Processing (NLP) tasks (Devlin et al.
2019). Similarly, GPT demonstrates that improvements
in NLP tasks can be achieved through pre-training of a
language model on a varied collection of unlabeled text
(Radford et al. 2018), followed by fine-tuning, the process
of taking pre-trained models and training them further
on specific data (Parthasarathy et al. 2024). The LLaMA
models (Touvron et al. 2023) are especially suitable for
research, with these state-of-the-art models trained using
only publicly available datasets.

More recently, we see the introduction of reasoning
models that make use of large-scale reinforcement learning



(RL). DeepSeek-R1 is a model trained using a multi-phase
training approach that begins with a cold-start data stage
before applying RL, significantly enhancing reasoning
performance (DeepSeek-AI et al. 2025).

The potential for an LLM in translating crochet pat-
terns arises from the combination of syntax and semantics
within these instructions. These patterns involve specific
syntax, such as stitch names along with their repetition in-
dicators, as well as semantic elements, such as descriptions
about stitch attachment or how to begin a row. A traditional
compiler, which is a software generally used to translate
code between languages, follows syntactic rules (Capon and
Jinks 1988) and lacks the flexibility to interpret meaning
beyond its predefined grammar. Additionally, some crochet
patterns omit steps that experienced crocheters infer, posing
challenges for more structured automation. Therefore, we
make use of LLMs to capture both the syntax and pattern
meaning and resolve the variations in crochet patterns that
have the same output.

LLM Task Adaptation
Popular methods for adapting LLMs to domain-specific
problems, including MT, include In-context Learning (ICL)
and fine-tuning. ICL involves prompting a model with task
demonstrations at inference time, without modifying the
model’s parameters. This method is popular due to its sim-
plicity and improved generalisation to out-of-domain tasks.
However, results from this approach have fallen short com-
pared to state-of-the-art fine-tuned models (Brown et al.
2020). Fine-tuning, on the other hand, involves updating the
weights of a pre-trained model with a target dataset. This
method performs well on many benchmarks, but needs a
large task dataset (Mosbach et al. 2021).

Parameter Optimisation Methods There are multiple
ways to optimise fine-tuning that have been introduced.
Among these is adapter-based fine-tuning, a family of ef-
ficiency techniques that involve freezing a pre-trained lan-
guage model and introducing a small number of trainable
parameters within its layers. This approach reduces training
time with minimal effect on performance (Razuvayevskaya
et al. 2024). Alternatively, Hu et al. (2022) proposed Low-
Rank Adaptation (LoRA), a technique that freezes pre-
trained model weights and adds trainable rank decompo-
sition matrices into each layer. These approximate large
weight matrices in a model by breaking them down into
smaller matrices, reducing the number of parameters needed
to adapt the model to new tasks. As seen in Figure 4, we only
train A and B, the low-rank matrices, while keeping W, the
pre-trained weights, intact.

MT Evaluation Metrics
There exist many metrics to evaluate the quality of machine-
translated text. One commonly used (Han and Wong 2016)
is BLEU (Bilingual Evaluation Understudy) (Papineni
et al. 2002), measuring the similarity between a candidate
translation and reference translation(s) based on matching
n-grams (sequences of length ”n”).

Figure 4: LoRA’s reparameterization, only training A and B
(Hu et al. 2022)

An alternative metric to BLEU is chrF (character n-
gram F-score) (Popović 2015), a metric useful when
word-level evaluation is insufficient. It focuses on character
n-grams instead of word n-grams, providing a more precise
measure of translation accuracy. chrF is computed by
considering the character n-grams of both the reference and
candidate translations. The formula for CHRF β is:

CHRF β = (1 + β2) ·
(

CHRP · CHRR

β2 · CHRP + CHRR

)

where CHRP is the arithmetic average of character
n-gram precision over all n-grams, CHRR is the arith-
metic average of character n-gram recall over all n-grams
and β determines the importance of recall relative to
precision.

Evtikhiev et al. (2022) found that chrF is the closest
match to human assessment for code generation against
multiple tested metrics, so it is useful for translation into
CrochetPARADE syntax.

Related Work
Since there are no observed applications of MT specifically
to crochet, we criticise works that fine-tune LLMs for trans-
lation tasks, focusing on their approach and methodology.

Alves et al. (2023) attempts to adapt LLMs to MT by
using LoRA, as well as traditional full fine-tuning on the
Llama 7B and 13B models. They found that adapter-based
fine-tuning with LoRA performs as well as traditional fine-
tuning, while reducing the number of training parameters
by 50 times. Despite its increased efficiency, this research
focuses on English-centric language papers which are in
high quantity, and does not consider the generalisation to
low-resource languages or non-English language pairs. This
highlights a bigger challenge in MT research: adaptability
across diverse domains.

To address this limitation, the Advanced Language
Model-based trAnslator (ALMA) fine-tuning process was



introduced by Xu et al. (2023), and consists of two stages.
The first involves improving the model’s proficiency in
non-English languages by fine-tuning on monolingual data.
The second stage involves fine-tuning using a small set
of high-quality parallel data. This technique, applied to
Llama-2, found that LLMs do not require very extensive
parallel data for MT. However, while ALMA does mark
progress for LLMs translating in diverse domains, its
performance remains inferior to models like GPT-3.5-T and
GPT-4.

There are also fine-tuning methods such as Multilin-
gual Fine-tuning with Translation Instructions (mFTI), a
method to train LLMs to follow translation instructions
directly as introduced by Li et al. (2023). This is done
by organising translation tasks as different instances,
where each instance is associated with a specific language
pair and its corresponding instructions. mFTI performed
better compared to ICL, where instructions are provided
within the input prompt. This method, however, suffers
from over/under translation, as well as hallucination, and
emphasises the difficulty in both following instructions
and maintaining context. Another instruction-based fine-
tuning method is the framework ParroT, proposed by
Jiao et al. (2023) that uses three types of instructions to
enhance translation: translation instruction, contrastive
instruction (by using different translations for a source
sentence), and error-guided instruction. These translation
instructions improve the translation performance of vanilla
LLMs, and with LoRA, also prevents over-fitting to the data.

Even with these advancements, these translation solu-
tions still struggle with high training costs for domain
adaptation and the struggle to translate rare words in
specific domains. To deal with this, Zheng et al. (2024)
proposed LlamaIT, a prompt-oriented fine-tuning method.
By fine-tuning Llama2-7B with a mix-domain dataset that
is task-specific using LoRA, and incorporating vocabulary
containing rare words into prompts, translation capabilities
are greatly improved with less over-generation. However,
as with other solutions, this research does not address its
capabilities for low-resource languages.

Finally, Zhu et al. (2024) uses Supervised Fine-Tuning
(SFT), with varying levels of labeled, parallel data, com-
paring them to ICL baselines and instruction-tuned LLMs.
It was found that LLMs can be effectively fine-tuned for
multilingual translation with as few as 32 parallel sentences.
However, similar to Alves et al. (2023), this research is
primarily focused on English-centric translations, highlight-
ing the consistent gap in addressing truly multilingual or
low-resource use cases.

Methodology
This section outlines the methodology for data collection,
pattern translation, model selection, and fine-tuning. We also
detail the dataset construction process to ensure a represen-
tative and scalable foundation, and explain the selection and
evaluation of large language models (LLMs) through base-

line inference, few-shot learning, and fine-tuning.

Data Collection
The dataset construction process began with learning the
CrochetPARADE manual, which covers information about
the platform as well as its specialised grammar. Once famil-
iar with the manual, we next analysed the features present
within this language. This involved identifying core compo-
nents such as stitch names, how repetitions are represented,
increases, decreases, and more. We then created subsets of
features of the language to add to the dataset incrementally,
ensuring a structured approach to dataset expansion. These
subsets are represented in Figure 5, illustrating the progres-
sive inclusion of more complex features. From this, set A
and set B were selected for inclusion in the current dataset,
prioritising those that appear most frequently in user patterns
and those that serve as a good base for future expansion.

Figure 5: Structured subsets of CrochetPARADE features
for incremental dataset expansion

We then required a collection of crochet patterns written
in natural language. This collection process was conducted
in two ways: writing original patterns and extracting sections
from publicly available patterns online. The written patterns
were designed to cover a range of features and structures
seen in the CrochetPARADE language, ensuring diversity in
the dataset. Meanwhile, the gathered patterns were collected
to maximise variety in the dataset while resembling patterns
that exist online. However, as crochet patterns are the intel-
lectual property of their designers, only patterns in the pub-
lic domain were used for this project. This means they are
no longer under the protection of copyright, and users are
free to copy, share, and sell these patterns. To ensure com-
pliance, all external patterns were sourced exclusively from
the following websites:
• https://freevintagecrochet.com
• https://antiquepatternlibrary.org

Data Translation and Compilation
For each of the collected patterns, we have used the
CrochetPARADE manual as our translation guide. We
went row-by-row through the current pattern, assessing
the stitches and features that are used, and then manually



translated them. After each pattern is translated, we ran
the pattern in the CrochetPARADE software to verify its
syntactic correctness, and then compared the 3D-rendered
output to images in the user pattern, if provided. The manual
thoroughly covers different aspects of the grammar, and
so the combination of this manual and software helped
build an effective translation process. All patterns were
compiled into a CSV file that contains the original pattern,
the translated pattern, and other data, such as the shape it
is meant to represent. We also assigned classes to each of
the translated patterns, representing features from subsets A
and B in Figure 5, and have described these classes in Table
1. A combination of letters (e.g., PL) indicates the presence
of features from multiple classes within a single pattern.
Additionally, we assume that all patterns inherently include
elements from Subset A (Class B).

The final dataset contained 109 patterns. The dataset
CSV file was split into eight train and test files, taking
approximately 1/8 of each class for testing, ensuring no
overlaps between them, using a Python script. A validation
set was not created due to the limited size of the dataset.

Initial Testing and LLM Selection
We selected suitable open-source models to test from vari-
ous sources, including models used in translation problems,
as described in our Related Work. Since we are using Un-
sloth for fine-tuning, we also considered popular models
on the platform based on likes and downloads. In addition,
DeepSeek has contributed to the research community by
open-sourcing six dense models distilled from DeepSeek-
R1 based on Qwen and Llama (DeepSeek-AI et al. 2025).
From these, we selected DeepSeek-R1-Distill-Llama-8B for
our experiments. With this, our chosen models were as fol-
lows:

• Llama3.2-3b
• Llama3.1-8b
• Deepseek-R1-Distill-Llama-8b
• Qwen2-7b
• Mistral-7b

LLM Pattern Generation Approaches
We evaluated three approaches for generating crochet pat-
terns using LLMs: baseline inference, few-shot learning, and
fine-tuning. To do this, we make use of Unsloth, a library
optimised for efficient model training and fine-tuning which
supports full fine-tuning, pretraining, and low-bit training
(4-bit, 8-bit, and 16-bit). Before applying any LLMs, the
eight training CSV files were first converted into a question-
answer JSON format.

Baseline Testing Baseline inference was carried out for all
models by loading the pre-trained model and tokeniser, pro-
cessing the dataset of questions and expected answers, and
generating responses using the model. The only difference
across models was the use of different chat templates, with
each model following the same general inference procedure.

Class Name Description

B Base Pattern Features from Subset A. Ba-
sic elements such as stitch
names, repetition of a stitch,
increasing and decreasing
within a single stitch.

L Labels Marking a stitch, or group
of stitches, to work into at a
later point (eg. 2sc.A, where
.A is defining the label)

A Attachment
Points

Using the @ symbol to work
into a specified stitch or into
a defined label (eg. sc@A,
working a single crochet
into the defined label)

P Premature
Endings

Condensing a long string
of repeating stitches into
a shorter format (eg.
[2sc,>,dc]*3 is equivalent
to 2sc,dc,2sc,dc,2sc)

Table 1: Class Descriptions

Few-shot Testing To conduct few-shot testing, we first
modified the input prompts in the dataset to provide the
models with context. Specifically, we chose three exam-
ples that encapsulate all features of our dataset well and
appended them to all input patterns using a Python script.
Following this, we used the same steps as in the baseline
testing.

Model Fine-tuning To fine-tune each model, the model
and tokeniser are first loaded, and LoRA is applied to enable
parameter-efficient fine-tuning. The training data is prepro-
cessed using a chat template, and then training is configured
with appropriate hyperparameters like batch size and learn-
ing rate. After training, inference is run on test data, and
results are saved. This process is repeated for each split to
iteratively fine-tune the models.

Evaluation Strategy and Results
The evaluation of translated user-generated crochet patterns
into the CrochetPARADE grammar focuses on both syntac-
tic and semantic criteria to ensure that the translated patterns
accurately reflect the intended structure and design of the
user’s original pattern. When calculating accuracy, we found
that automating a direct comparison to identify exact pattern
matches was not feasible. This is because minor variations
can exist without affecting the final pattern output. For ex-
ample, assigning a label as ”A”, ”B”, or any other letter has
no impact on the pattern, and adding unnecessary parenthe-
ses around lines does not alter the outcome either. So, we
manually compared over 1500 patterns to observe these vari-
ations and compare the 3D-rendered outputs of the manually
translated patterns to those generated by our model to mea-
sure accuracy. This comparison involved a stitch count and



an examination of stitch types, which can be accessed in the
3D view in CrochetPARADE by hovering over each stitch.
We define syntactic correctness as the number of patterns
that execute successfully in the CrochetPARADE platform,
without generating syntax errors. In addition to the classes
described in Table 1, we also test Class LA, which are pat-
terns that contain both features from Class L and Class A.

Baseline Testing

When performing baseline testing, since none of the tested
models were trained on CrochetPARADE syntax and had no
knowledge of the platform, their outputs were syntactically
incorrect and therefore did not match any of the original
translated patterns. Instead, the models often attempted to
define CrochetPARADE itself, sometimes guessing at possi-
ble abbreviations rather than generating usable instructions.
For example, outputs from Llama3.2-3b incorrectly define
repetitions using ’REP’ instead of the language’s bracket
notation. Meanwhile, we also see models like Deepseek-R1
invent expansions for the platform’s name, such as ”Pattern
Authoring Rules And Diagram Encoding”. Errors like these
reveal that without explicit training on CrochetPARADE,
these LLMs default to approximation (or fabrication) of the
language and its rules.

Few Shot Testing

Tables 2 and 3 reveal significant improvements in accuracy
and syntactic correctness, respectively, compared to our
baseline testing, when using ICL. For accuracy, Qwen2-
7b leads (24.3%) with a strong performance in Class P
(50%), while Llama3.1-8b also performs its best in Class
P (37.5%). For syntactic correctness, Qwen2-7b again
performs best (40.8%) with particular strength in Class
A (62.5%), and Deepseek-R1 emerges as the only model
achieving any correctness in Class L (25%). In addition, all
five models score 0% accuracy in Class L and LA, showing
class-specific struggles. The overall accuracy is depicted in
Figures 6.

Similar to our baseline testing, we see models defin-
ing stitches on their own. For example, we see Mistral-7b
defining the slipstitch as ’slst’ instead of the correct
’ss’ on multiple occasions. We also see interesting out-
put from our reasoning model, Deepseek-R1, within its
<think></think> tokens. In more than one example, we
see the output reasoning through each example pattern pro-
vided and by the end, outputs ”Wait, I’m getting confused.
Let me check the examples again.” and repeats the same
process. It also produced unexpected terms for some pat-
terns, for example, outputting ”double crocodiles” instead
of ”double crochet”. These results together demonstrate that
while few-shot learning enables some syntactic validity,
models still lack consistent, accurate pattern translation.

1All mentions of DeepSeek-R1 from this point are referring to
Deepseek-R1-Distill-Llama-8b.

Model A P L LA B O

Llama3.2-
3b

4.2 0 0 0 13.7 8.7

Llama3.1-
8b

12.5 37.5 0 0 33.3 22.3

Mistral-7b 8.3 8.3 0 0 29.4 18.4

Qwen2-7b 33.3 50 0 0 21.6 24.3

Deepseek-
R11

16.7 0 0 0 23.5 15.5

Table 2: Fewshot Comparison of LLMs by Accuracy for
Each Class and Overall Accuracy (O) in %

Figure 6: Bar Chart for Fewshot Comparison of LLMs by
Overall Accuracy

Fine-tuning Results
Tables 4 and 5 show the results of the fine-tuning with
accuracy and correctness, respectively, with 8-fold cross-
validation. DeepSeek-R1 achieved the highest overall
accuracy at 74%, followed by Qwen2-7b (70.2%), Mistral-
7b (69.2%), and Llama3.1-8b (69.2%), with Llama3.2-3b
performing the lowest at 46%. The overall accuracy is
depicted in Figure 7. Interestingly, while Qwen2-7b had the
highest syntactic correctness (87.5%), its overall accuracy
(70.2%) suggests it may generate syntactically correct
but incorrect outputs. Conversely, DeepSeek-R1, despite
having the highest accuracy, did not achieve the highest
correctness, though it was not far behind. This could
indicate that patterns it translated incorrectly were also less
likely to be structured correctly as valid CrochetPARADE
patterns. Nevertheless, with its strong overall performance,
DeepSeek-R1 remains the most effective model in this
evaluation.

For patterns that are syntactically correct but do not ac-
curately reflect the original pattern, we examine what kind
of variations occur. For instance, Figure 8 visualises a pat-
tern from the dataset where the output takes the shape of a
cone. The output pattern generated by Llama3.2-3b is shown
in Figure 9, where, despite maintaining the general struc-



Model A P L LA B O

Llama3.2-
3b

12.5 25 0 12.5 19.6 17.5

Llama3.1-
8b

45.8 37.5 0 37.5 37.3 35

Mistral-7b 37.5 8.3 0 25 41.2 34

Qwen2-7b 62.5 50 0 50 29.4 40.8

Deepseek-
R1

25 25 25 37.5 25.5 24

Table 3: Fewshot Comparison of LLMs by Correctness for
Each Class and Overall Correctness (O) in %

Model A P L LA B O

Llama3.2-
3b

25 0 10 14.3 83.7 46

Llama3.1-
8b

70.8 37.5 40 14.3 91.8 69.2

Mistral-7b 66.7 50 60 14.3 89.8 69.2

Qwen2-7b 66.7 62.5 0 28.6 91.9 70.2

DeepSeek-
R1

75 62.5 57.1 42.9 87.8 74

Table 4: Fine-tuning Comparison of LLMs by Accuracy for
Each Class and Overall Accuracy (O) in %

ture (creating a ring and working into it), a single crochet is
used instead of a triple crochet. Since the single crochet is a
shorter stitch, the output appears more circular than conical.
This shows how small syntactic changes can significantly
impact the final shape of a crochet pattern.

chrF Evaluation
On our most successful pattern generation method, fine-
tuning, we continue evaluating the model output. In order
to compare the matching character n-grams between the
original and translated pattern, we applied the chrF metric,
where a score of 0 means no overlap and 1 means a perfect
match at the character level between the generated and
reference translation. The results, shown in Figure 10,
indicate that DeepSeek-R1 achieved the highest average
chrF score at 0.851, suggesting it produces the most
character-level accurate translations overall. Qwen2-7B
and Mistral-7B followed closely with scores of 0.839 and
0.837, respectively, demonstrating their strong ability to
generate outputs that align well with the reference patterns.
Llama-8B also performed well with a score of 0.819, while
Llama-3B had the lowest chrF score at 0.737, indicating a
comparatively lower character-level similarity.

Interestingly, while DeepSeek-R1 did not have the highest

Figure 7: Bar Chart for Fine-tuning Comparison of LLMs
by Overall Accuracy

Model A P L LA B O

Llama3.2-
3b

70.8 37.5 40 28.6 87.8 68

Llama3.1-
8b

83.3 62.5 80 28.6 91.8 79.8

Mistral-7b 87.5 87.5 80 28.6 95.9 86.5

Qwen2-7b 95.8 75 50 100 91.9 87.5

DeepSeek-
R1

87.5 75 71.4 42.9 91.9 82.5

Table 5: Fine-tuning Comparison of LLMs by Syntactic Cor-
rectness for Each Class and Overall Correctness (O) in %

correctness score, its high chrF score suggests that its out-
puts are still very close to the reference patterns at the char-
acter level. This implies that the patterns it generates, even
when incorrect, may not require significant modifications to
become valid, reinforcing its strong overall performance.

Error Analysis
For patterns that fail to execute due to syntax errors, an
error analysis was conducted. This analysis categorised
the types of syntactic errors that occur as a pop-up on
the CrochetPARADE platform, such as missing labels
or undefined stitches. Identifying and categorising these
errors allows us to draw conclusions about areas where the
translation model may be prone to misinterpretation.

The most common error across models was ”Label
not Found”, which occurs when working with an attachment
point that references a label that was never defined. Another
frequent error, primarily seen with Llama3.2-3b, was ”Stitch
not Defined”. This happens when the model generates stitch
names that are not recognised by the CrochetPARADE
platform, such as using ”slst” instead of ”ss” for a slip stitch
or ”tc” instead of ”tr” for a triple crochet. Additionally, the
”ID not Found” error appeared across all fine-tuned models.
This happens when the number of stitches in a row exceeds



Figure 8: Cone Pattern with correct output, in CrochetPA-
RADE and crocheted

Figure 9: Cone Pattern with Llama3b output, in CrochetPA-
RADE and crocheted

the available foundation stitches from the previous row,
leaving some stitches without a valid placement. Essentially,
the model is trying to work into an ID that doesn’t exist.
These errors highlight recurring issues in pattern structure
and terminology, providing clear targets for refining the
dataset and training process.

Conclusion
This project aimed to improve the creation and modification
of crochet patterns by evaluating an LLM’s ability to
translate user-written patterns into the CrochetPARADE
syntax. The key objectives were to (1) create a dataset of
user-generated patterns and their translations, (2) evaluate
LLMs for translation with and without context, (3) fine-tune
selected LLMs, (4) develop an evaluation framework, and
(5) assess model performance.

Significant progress was made. The dataset represents
the first structured, open-source collection of crochet
patterns for machine learning, with over 100 patterns
spanning various techniques. The best-performing model,
DeepSeek-R1-Distill-Llama8b, achieved 74% syntactic
accuracy. Fine-tuning on a domain-specific dataset led to a
58.5% improvement over few-shot learning. The evaluation
framework combines automated checks with expert review
and offers a methodical way to assess pattern translations.
These contributions help bridge computational methods and
traditional craft knowledge.

Limitations and Future Work
Some limitations remain. Accuracy varied with pattern
complexity, and models struggled with classes like L
(”Labels”), often referencing labels before defining them.
The dataset, while diverse, does not cover the full range
of crochet features. Manual validation, though necessary,
limited scalability.

Future work should expand the dataset, especially with
patterns in Subset C in Figure 5. Syntactically correct but se-
mantically inaccurate patterns could be reverse-engineered

to add more examples. Further model improvement through
reinforcement learning and real-time user feedback could
boost translation quality. A user-facing system for validating
outputs would also support continuous refinement.

This project lays a foundation for automated crochet
pattern translation and highlights both the potential and
challenges of this task. Addressing current gaps will help
make patterns more accessible and standardised.

Figure 10: chrF results across models

The created dataset can be found at:
https://github.com/rachaelteresa/StitchSwitch
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