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Abstract
We propose two approaches for human activity recognition
in videos that leverage knowledge graph representations. The
first method constructs a Positional Encoding Knowledge
Graph (PE-KG) by extracting objects and their spatial re-
lationships from video keyframes, which are then analyzed
using association rule mining. The second approach, termed
Video KG, augments this representation by incorporating se-
mantic cues from image captioning and affective insights
from emotion detection with demographic analysis. The ap-
proach employs knowledge graph embeddings to capture
spatiotemporal and contextual dependencies, leading to im-
proved classification accuracy and enhanced interpretability
on benchmarks such as the Kinetics dataset.

Introduction
The availability and proliferation of video datasets coupled
with the advancements in compute power have positioned
video data as a key, yet largely untapped resource for mod-
ern machine learning (ML) models. Video data provides a
rich source of temporal and spatial information, allowing for
more comprehensive scene understanding compared to static
images. Unlike static images that capture only a single mo-
ment in time, video data enables the extraction of dynamic
cues such as motion vectors, object trajectories, temporal de-
pendencies, and the evolution of scene elements over time.
These temporal features offer critical insights into the pro-
gression of actions, subtle changes in motion, and the con-
text of interactions, thereby enriching the scene understand-
ing and context-awareness of ML systems.

In this paper we are focusing on a key ML task in the
context of video data, namely human activity recognition
(HAR). It is worth mentioning though, that non-visual sens-
ing modalities have also been applied to this end. For ex-
ample, wearable inertial sensors—such as accelerometers
and gyroscopes embedded in smart devices—have become
key for continuously monitoring daily activities (De Ramón
Fernández et al. 2024). Fluctuations in radio frequency sig-
nals from WiFi and Bluetooth networks are now exploited
to infer fine-grained motion patterns even in cluttered indoor
settings (Engström and Persson 2023). Furthermore, acous-
tic sensors that analyze ambient sound patterns are emerging
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as a viable modality for recognizing activities without com-
promising privacy (Gharib et al. 2023).

Nonetheless, video-based HAR provides the most com-
prehensive information, as it captures rich spatial and tem-
poral context along with subtle visual cues that no single
non-visual modality can fully replicate. By analyzing the
dynamic and contextual information inherent in video data,
HAR systems can interpret complex social dynamics and
interactions that are critical in real-world applications. The
ability to accurately recognize activities enables the devel-
opment of intelligent systems that can assist individuals,
enhance security, and improve automation in diverse set-
tings. Thus, HAR has gained significant attention due to its
broad applications in surveillance, healthcare, autonomous
systems, and human-computer interaction, to name a few.

For instance, in surveillance, HAR systems can auto-
matically detect anomalous or dangerous behaviors in real
time, thereby assisting security personnel with prompt threat
assessment (Tandel et al. 2024). In healthcare, these sys-
tems contribute to patient monitoring by identifying critical
events such as falls or abnormal movements, which is par-
ticularly valuable for elderly care and rehabilitation (Jamali
et al. 2025). Autonomous systems, including self-driving
cars and drones, leverage HAR to predict pedestrian tra-
jectories and understand environmental dynamics, thus im-
proving navigational safety (Bi et al. 2019). Moreover, in the
realm of human-computer interaction, HAR facilitates intu-
itive gesture recognition and context-aware interfaces, lead-
ing to more immersive and responsive user experiences (Sun
et al. 2024). Such diverse applications, underscore HAR’s
potential to transform multiple industries by offering critical
insights into human behavior and interactions.

While deep learning approaches have achieved signifi-
cant breakthroughs in HAR, relying solely on these meth-
ods often results in models that are highly data-intensive and
sometimes less robust in challenging environments. Classi-
cal techniques, with their domain-specific handcrafted fea-
tures, offer robustness and interpretability but can fall short
in capturing the high-level abstractions necessary for com-
plex video understanding. In this paper we aim to build on
the advantages of both type of approaches. By leveraging
hybrid models, our research aims to contribute to the devel-
opment of more accurate and adaptive HAR frameworks that
can be deployed in real-world applications.



The remainder of this paper is structured as follows. In
Section 2 we review related works for video-based HAR.
Section 3 introduces two approaches based on knowledge
graph representations. Section 4 presents the experimental
setup and discusses results. Finally, we conclude the paper
in Section 5.

Related Work
Early approaches primarily relied on handcrafted features
for activity recognition, such as histogram of oriented gradi-
ents (Dalal, Triggs, and Schmid 2006), optical flow (Wang
et al. 2011), and spatiotemporal interest points (Chakraborty
et al. 2011), which, while computationally efficient, were
limited in performance due to the quality of these features.
Onward, the methodologies utilized in HAR have evolved
significantly, driven by advancements in deep learning tech-
niques.

CNN-based approaches
Convolutional neural networks (CNNs) have been widely
employed for spatial feature extraction from video frames,
effectively capturing local patterns, such as edges and tex-
tures. In (Simonyan and Zisserman 2014) the authors in-
troduced an important milestone, whereas, a deep learn-
ing framework decouples video analysis into two comple-
mentary streams: a spatial stream that processes static RGB
frames to capture appearance and object cues, and a tempo-
ral stream that processes stacked dense optical flow fields
to capture motion information. This multi-stream approach
has been further developed in various HAR settings. For in-
stance, the application of automated machine learning (Au-
toML) techniques is investigated in (Popescu, Mocanu, and
Cramariuc 2020), where the authors devise several data
streams through independent 2D CNNs, focusing on depth
data, skeletal information, and contextual objects and eval-
uate different fusion mechanism, concluding that the late
fusion approach consistently outperformed the other tech-
niques. Unlike 2D CNNs, which process spatial information
from single frames, 3D CNNs extend convolutions into the
temporal dimension, making them well-suited for capturing
motion patterns over time. In (Carreira and Zisserman 2017),
the authors propose repurposing existing 2D CNN architec-
tures designed for image classification and inflating them
into 3D architectures capable of processing video. In gen-
eral, 3D CNNs are widely used for HAR, particularly for
video and depth sensor data, having been shown to deliver
high performance.

RNN-based approaches
However, to account for temporal dynamics, recurrent neu-
ral networks (RNNs), particularly long short-term memory
(LSTM) networks, are used to model sequential dependen-
cies, enabling the retention of information from previous
frames. In (Inoue, Inoue, and Nishida 2016), the Deep RNN
is structured as a multi-layer LSTM network, where each in-
ternal layer captures the temporal dynamics. Extensive pa-
rameter tuning is performed, managing to decrease the in-
ference time by an order of magnitude compared to previ-
ous work. Similarly, in (Ullah et al. 2020), the authors use

LSTM and its variants such as multi-layer or deep LSTM
and bidirectional LSTM networks, for sequence learnign in
the context of HAR. Ensembles of deep LSTM learners are
explored in (Guan and Plötz 2017) and shown to outperform
individual LSTM networks.

Hybrid approaches
In (Johnson and Uthariaraj 2020), a Restricted Boltzmann
machine (RBM) architecture, is combined with CNNs, such
that the convolutional part serves as the first layer for
extracting low-level spatial-temporal features from video
blocks, which are then further processed by the RBM-NN to
build a robust, compact representation for human action. In
(Joudaki, Imani, and Arabnia 2025), the authors build upon
this architecture combining a 2D Conv-RBM with an LSTM
network. Due to its efficient and lightweight architecture, the
model is particularly beneficial for real-time systems.

Recent studies have shown that hybrid models, integrat-
ing CNNs with RNNs, yield robust performance in recog-
nizing activities. (Xia, Huang, and Wang 2020) proposes
a two-layer LSTM followed by convolutional layers archi-
tecture. A global average pooling layer is used to replace
the fully connected layer after convolution for reducing
model parameters, in combination with batch normalization.
A CNN-LSTM architecture is introduced in (Mutegeki and
Han 2020), where the authors report on results on various
network configurations, showing state-of-the-art results on
several video datasets. ConvLSTM and LRCN representing
different variants for integrating CNNs and RNNs, are com-
pared in (Uddin et al. 2024), demonstrating that the LRCN
model offers a better trade-off between accuracy and effi-
ciency. In (Mihanpour, Rashti, and Alavi 2020), the authors
combine CNNs and deep bidirectional LSTM. First, the ap-
proach processes raw video frames through ResNet152 to
extract deep, discriminative features that capture the visual
content of each frame. These features are then sequentially
fed into a DB-LSTM, which processes the data in both for-
ward and backward directions to effectively learn the tem-
poral dependencies and dynamic patterns across frames.

Attention-based approaches
Despite their effectiveness, CNN-LSTM architectures can
encounter computational inefficiencies due to high param-
eter count, particularly with high-resolution or extended
video data. This limitation has prompted researchers to ex-
plore alternative architectures, such as Vision Transformers
(ViTs (Kolesnikov et al. 2021)), which utilize self-attention
mechanisms (Lin et al. 2017) to capture global dependencies
across spatial and temporal dimensions.

VideoMAE V2 (Wang et al. 2023) proposes a novel
framework for scaling video foundation models by integrat-
ing a dual masking strategy into the masked autoencoder
paradigm. The encoder operates on a highly masked subset
of video tokens to extract robust spatiotemporal representa-
tions, while a second masking mechanism is applied within
the decoder to further reduce computational cost without
sacrificing reconstruction quality. This mechanism enables
efficient pre-training even for billion-parameter models built
on ViTs. ViT-ReT (Wensel, Ullah, and Munir 2023), is



a novel transformer-based framework for human activity
recognition in videos that replaces the conventional convo-
lutional and recurrent layers with a ViT for spatial feature
extraction and a Recurrent Transformer (ReT) for modeling
temporal dependencies. The ViT efficiently processes indi-
vidual video frames, while the ReT captures the sequential
dynamics across frames in parallel, overcoming the inherent
bottlenecks of traditional CNN-RNN architectures A key in-
novation in (Bertasius, Wang, and Torresani 2021) consists
in introducing the ”divided attention” mechanism, which
separately applies temporal and spatial attention within each
Transformer block to efficiently capture both local and long-
range dependencies, essentially extending the transformer
framework to temporal data. The advantage of this approach
consists in significantly improving computational efficiency
and scalability.

In contrast to traditional deep learning architectures that
often function as black boxes, knowledge graph-based ap-
proaches offer a promising pathway for achieving both ro-
bust performance and enhanced interpretability in video
analysis. By representing videos as structured graphs where
nodes denote objects and edges capture their relationships,
these methods enable explicit reasoning over complex visual
scenes. This structured representation facilitates the integra-
tion of heterogeneous data sources, thereby enriching con-
textual understanding. In this paper we introduce two KG-
based methods for the video action recognition task, focus-
ing on contextual-awareness and enhanced interpretability.

Proposed Framework
Overview
Formally, the problem of video action recognition assumes
a given training set of labeled videos Dt = {Vt,Yt}, where
each video vt ∈ Vt is associated with an action label
yt ∈ Yt and each video can be represented as a sequence
of frames vt = {f1, f2, . . . fn}. Similarly, there is a vali-
dation dataset Dv = {Vv,Yv} and the task is to map each
video vv ∈ Vv to its corresponding action label yv ∈ Yv ,
where Yt = Yv . The goal is thus to learn a classifier that
can generalize to Dv .

Positional Embedding KG Approach
Activity recognition in video streams requires analyzing
continuous sequences of images, while understanding the
context of an image requires analyzing its content through
high-level semantic concepts. These concepts are repre-
sented as objects, which are fundamental for interpreting
scene context and play a crucial role in recognizing activ-
ities within videos. Starting from this observation we set
out to investigate the feasibility of using a high-level image
representations for action recognition, by describing images
through identifying connections between various objects, re-
sulting in a more detailed and meaningful representation of
the visual scene.

Deep neural networks have been established as the best
performing ML models for object detection including var-
ious architectures, such as region-based or single-stage

Figure 1: Applying object detection on examples from the
Kinetics dataset (Kay et al. 2017)

detectors. Region-based models first generate region pro-
posals and then classify objects within those regions e.g.
Faster R-CNN (Ren et al. 2015). Single-stage detectors, e.g.
YOLO (Tian, Ye, and Doermann 2025), directly predict ob-
ject classes and bounding boxes in a single forward pass.
While the former category offers precise localization and
classification, the latter can provide a good trade-off be-
tween speed and accuracy. The output of an object detection
model includes coordinates defining object location (bound-
ing boxes), the predicted object category and the confidence
score of a correct detection (see Fig. 1).

Knowledge graph generation. In this phase, we begin by
extracting from each video the set of unique objects from
the scene and determining their relative position based on
the information obtained from the bounding box coordi-
nates. We define the following set of mutually exclusive
positional relationships between the detected objects: P=
{next to, behind, in front, to the left, to the right, above, un-
der}. Next, we represent this information using a knowledge
graph that captures the given relations between the iden-
tified objects. The Positional Encoding Knowledge Graph
(PE-KG) Gpos = {O, T ,P,L} is defined as a union of a
set of nodes O and a set of directed triples T ⊆ O x P x
O, that are constructed over a set of predicates P . The nodes
o ∈ O, from the generated PE-KG, correspond to the classes
of objects that can be recognized by the given object detec-
tor model. The set of literal values L denotes the confidence
score associated to each triple. Consequently, we process the
training set Dt and obtain a positional encoding knowledge
graph for each video v ∈ Vt.

Activity Mining Next, we adapt the data mining Apriori
algorithm (Agrawal and Srikant 1994) and apply it on the
PE-KG graphs for deriving association rules that can be used
for activity classification.

The Apriori algorithm starts by identifying frequent item-



sets based on a minimum support threshold. In our setting,
for each video v ∈ Vt, associated to a given action label
yt ∈ Yt, we extract a set of triples representing object rela-
tionships, which correspond to an itemset. Frequent sets of
relationship are determined based on support calculation for
a given itemset X:

Support(X) =
Number of videos containing X

Total no. of videos
(1)

In order to account for the probability scores produced by
the object detection model, we replace the traditional binary
support (1 if a relation appears, 0 otherwise), with the arith-
metic mean of the scores of all the objects that appear within
the itemset. Thus, we onwards use the updated formula of
the support, where instead of just counting the presence of
X , we take the average score of the relations in X across all
videos.

S(X) =
1

|V|
∑
v∈V

Sv(X) (2)

Sv(X) =
1

|X|
∑
i∈X

si (3)

where si is the probability score of object i, |X| is the num-
ber of object in the itemset X and Sv(X) is the probability-
weighted support of X . Itemsets are then filtered based on
whether the support is greater than or equal to a given min-
imum support threshold δs. We generate rules of the form
X ⇒ Y , where X is a set of triples and Y represents the
activity class, by computing the following metrics:

Confidence(X ⇒ Y ) =
Support(X ∪ Y )

Support(X)
(4)

Lift(X ⇒ Y ) =
Confidence(X ⇒ Y )

Support(Y )
(5)

Similarly, we used δc and δl as minimum thresholds for
prunning the candidate set based on the confidence and lift
scores and obtaining the final association rules. Finally, new
video samples can be classified using the generated activity
association rules X ⇒ Y , where X is a structured scene
representation. Using association rules instead of relying on
single object-object relations provides a more comprehen-
sive and context-aware understanding of a scene.

Video KG Approach
In the following we introduce an additional knowledge
graph video representation that builds upon the positional
embedding approach, augmenting the type of predicates
captured from the scenes. Namely, we further integrate two
state-of-the-art pretrained models, one for image captioning
and one for emotion detection with demographic informa-
tion, in order to enrich the expressiveness of the extracted
relationships. Note that the proposed framework is not re-
stricted to specific type of relationships, but as we will see,
it is general in the sense that it can directly integrate any type
of model that outputs relevant triples.

Figure 2: Video graph framework

The first step is video preprocessing, where keyframes
are sampled from the video, based on scene change detec-
tion, using the histogram-based comparison technique (Cho
and Kang 2019). Next, a captioning model is employed to
produce detailed descriptions for the identified keyframes.
The typical image-to-text architecture for image caption-
ing consists of an image encoder and a language decoder.
Specifically, in this study we use VC-GPT(Wang, Huang,
and Li 2022), a transformer-based model that leverages the
powerful text generation capabilities of GPT-2. The gener-
ated captions are then parsed to extract entities such as peo-
ple, objects, and actions, as well as relationships between
them, which are used to generate triples. Emotion detection
is integrated by employing a high performing CNN-based
facial expression recognition model (Khattak et al. 2022),
that classifies emotions such as happiness, sadness, and sur-
prise from detected faces. The detected emotions are then
linked to specific individuals and inserted as triples within
the knowledge graph, enabling an affective representation
of video content. Demographic analysis is also incorporated
by applying the same pretrained model, which is designed
for multi-task learning, being able to infer attributes such as
age, gender, and ethnicity from detected faces.

Triplet Encoding Fig. 2 depicts the video graph frame-
works, which brings together the triples generated by the
three different neural network models NNp, NNc, NNe,
focusing on positional relations, image captioning, emo-
tion recognition and demographics, respectively. The set of
triples (h, r, t) are consolidated into the Video Graph G, de-
scribing facts from the scenes, with h representing the head
entity (or subject), r the relation (or predicate), and t the
tail entity. Although triples can be used to effectively rep-
resent structured data, their symbolic nature makes knowl-
edge graphs challenging to manipulate and use for down-
stream ML task. However, graph embeddings have emerged
as an efficient technique to convert high-dimensional sparse
graphs into low-dimensional, dense and continuous fea-
ture spaces. The purpose of graph embeddings is to en-
code nodes into a low-dimensional, highly-informative la-
tent vector space, preserving the graph properties and fos-
tering knowledge inference and fusion.

KG embeddings are typically categorized into three
classes: translational, semantic matching, and neural
network-based. In this paper, we are focusing on one repre-
sentative technique from each class, namely TransE, Com-
plEx, and ConvKB. The TransE model (Bordes et al. 2013)
was the first to introduce the idea of translational invari-
ance in the context of graph embeddings, taking inspiration



Activity Precision Recall F1-score
Approach I3D PE-KG I3D PE-KG I3D PE-KG
Cooking Chicken 0.68 1.00 0.54 0.38 0.60 0.55
Dunking Basketball 0.79 0.62 0.53 0.78 0.63 0.69
Filling Eyebrows 0.72 0.86 0.85 0.18 0.78 0.30
Golf Putting 0.55 0.75 0.81 0.45 0.66 0.56
Playing Piano 0.76 0.71 0.48 0.88 0.59 0.79
Pushing Cart 0.58 1.00 0.67 0.45 0.62 0.62
Riding Elephant 0.82 1.00 0.76 0.94 0.76 0.97
Roller Skating 0.83 0.16 0.32 0.47 0.46 0.23
Skateboarding 0.67 0.49 0.95 0.90 0.78 0.63
Smoking 0.68 0.73 0.40 0.44 0.51 0.55

Table 1: Performance metrics comparing the I3D detector to the PE-KG approach.

from regularities observed in the word2vec (Mikolov et al.
2013) linguistic embeddings. Entities and relations are low-
dimensional vectors in Euclidean Rd space, enforcing that
relation r acts as a translation vector between the two enti-
ties h and t:

h+ r ≈ t (6)
Once the embedding is trained, scoring functions are used

to measure the likelihood or strength of a relationship be-
tween nodes based on their learned embeddings. The scor-
ing function for TransE model is computed using the l1 or
l2 norm constraints:

fr(h, t) = ∥h+ r − t∥l1/l2 (7)
ComplEx (Trouillon et al. 2016), belongs to the class of

semantic matching models, where the triple likelihood is
quantified using the multiplication operator:

fr(h, t) = h× r × t (8)
In ComplEx, the embeddings are values in the complex

space Cd, where the scoring function returns the real value
Re(·) of:

fr(h, t) = Re
(
h⊤diag(r)t̄

)
(9)

t̄ represents the complex conjugate of t and diag(r) restricts
r to a diagonal matrix.

Finally, ConvKB (Nguyen et al. 2017), exploits a convolu-
tional neural network to train embeddings, where the scoring
function is obtained by applying the 1D convolution filters
Ω to the matrix obtained by transforming each element of a
triple into a three-row matrix [h, r, t] ∈ R3×d. Then, the fea-
ture maps are concatenated and used to determine the score
by performing a dot product with the weight vector w:

fr(h, t) = concat (σ ([h, r, t] ∗ Ω))w (10)

Activity recognition In order to perform activity recogni-
tion, we first proceed to generate an individual knowledge
graph for each given activity in our training set Dt. This im-
plies conducting the following sequence of steps:
• Extracting the keyframes for each video v ∈ Vt;

• Applying the neural network models NNp, NNc and
NNe onto the keyframes to generate the set of triples Tv
corresponding to each video v based on extracting po-
sitional relations, image captions and emotion detection,
plus demographics information;

• For each activity label y ∈ Yt, we construct a video
graph Gt

y = {
⋃
Tv|∀v ∈ Vt , where v, corresp. to act. y}

as the union of all triples extracted from all videos v as-
sociated to activity y.

• We train three embedding representations for each Gt
y

based on the TransE, ComplEx, and ConvKB models.

In the previous section, we reviewed the scoring functions
for the different embedding representations. These are used
to determine the plausibility of each triple. Training the em-
beddings consists of solving the optimization problem that
maximizes the total plausibility of observed triples, by up-
dating the entity and relation embeddings. It is worth men-
tioning that the triples extracted from videos represent the
positive examples used during training. Consequently, we
also generate negative samples, both by corrupting either its
tail or head, and by sampling triples from the other classes,
in order construct a training set able to learn strong discrim-
inative representations. Finally, activity recognition for an
unseen video is carried out by first extracting all the triples,
similarly to the training process, followed by comparatively
assessing the plausibility of the given set of triples against
the previously generated video graphs Gt

y , corresponding to
each activity label y.

Experimental Results
In the following, we report on experiments on the two pro-
posed approaches evaluated on the Kinetics dataset. Kinetics
(Kay et al. 2017) is a large-scale action recognition dataset
used for training and benchmarking machine learning mod-
els in video understanding. It was developed by DeepMind1,
it contains short video clips labeled with human actions
and it comes in several versions, depending on the size and
number of activity classes. In this paper we are using the
Kinetics-400 version, consisting in 400,000 videos across

1https://deepmind.google



400 action classes. Due to the nature of our approach, in the
experiments we are particularly focusing on human-centric
activities that involve interacting with different objects.

We choose a 3D-CNN architecture as a baseline for com-
parison against our proposed PE-KG approach. Specifically,
we opt for the efficient I3D network, which can process
videos of different lengths by using sliding window mech-
anisms and 3D global pooling, making it adaptable to real-
world video sequences. Additionally, I3D is known to out-
perform other 3D-CNN models, such as C3D (Tran et al.
2015), having higher accuracy and better transfer learning
capabilities, being pretrained on the ImageNet dataset (Deng
et al. 2009). In Table 1 we summarize results on a number
of activities across key performance metrics. It is interest-
ing to observe that our proposed approach shows improved
performance against I3D mainly for object-centric activities,
which involve a larger scale object e.g. playing piano, rid-
ing elephant. The PE-KG approach also proves to be good
in terms of having a low rate of false positives. However, it
seems to be struggling with activities where the object in-
volved is not clearly highlighted in the video, such as roller
skating. Overall, the PE-KG model has the benefit of provid-
ing human-level interpretability of the activity detection pro-
cess in contrast to black-box neural network models. More-
over, by generating the association rules used during activity
recognition, it provides an interface for the human user to
inspect and possibly directly adjust these high level activity
representations learned during the training process.

The Video Knowledge Graph approach is also evaluated
based on the Kinetics dataset. For classifying a given video
v, first, the NNp, NNc, and NNe models are applied to
the keyframes to generate the set of triples Tv , leveraging
extracted positional relationships, image captions, emotion
detection, and demographic information. Next, we want to
evaluate the plausibility for the set Tv of belonging to one of
the video graphs Gt

y . Recall, that during training we are con-
structing a separate video graph Gt

y for each activity label y.
In order to compare the plausibility of Tv against the video
graphs Gt

y , we cast the problem of activity recognition to
a ranking problem, considering the following information-
retrieval metrics:

MR =
1

|Q|

|Q|∑
i=1

rank(h,r,t)i (11)

MRR =
1

|Q|

|Q|∑
i=1

1

rank(h,r,t)i
(12)

Hits@N =

|Q|∑
i=1

1 if rank(h,r,t)i ≤ N (13)

where |Q| denotes the number of triples extracted from a
given video.

In Eq. 11, the Mean Rank (MR) computes the average
of all the ranks of the triples extracted from a given video.
The value ranges from 1, the ideal case when all ranks are
equal to 1, to the number of corruptions, where all the ranks

are last. Note, that the rank is determined based on order-
ing the scoring functions outlined in the previous section.
In this manner, we obtain an aggregated score for the set of
triples Tv across each of the activity labels. The final label is
assigned based on the lowest rank. Similarly, the Mean Re-
ciprocal Rank (MRR) in Eq. 12, computes the average of the
reciprocal ranks of all the triples. The value ranges from 0 to
1; higher the value, better is the model. Finally, the Hits@N
metric (Eq. 13) gives the percentage of computed ranks that
are greater than (in terms of ranking) or equal to a rank of N .
The value ranges from 0 to 1, with higher values indicating
a better model.

Table 2: Performance Metrics for the Video KG Approach

TransE complEX convKB
Motorcycling
Mean Rank 6.45 14.10 10.53
Mean Reciprocal Rank 0.37 0.60 0.46
Hits @1 0.00 0.56 0.36
Hits @10 0.85 0.67 0.64
Hits @100 1.00 1.00 1.00
Number of videos 50 50 50
Number of analyzed triples 604 604 604
UsingComputer
Mean Rank 4.29 6.26 2.33
Mean Reciprocal Rank 0.37 0.54 0.82
Hits @1 0.00 0.46 0.71
Hits @10 0.92 0.75 0.93
Hits @100 1.00 1.00 1.00
Number of videos 50 50 50
Number of analyzed triples 237 237 237
WalkingDog
Mean Rank 18.75 25.21 16.72
Mean Reciprocal Rank 0.10 0.12 0.24
Hits @1 0.00 0.06 0.18
Hits @10 0.32 0.22 0.33
Hits @100 1.00 1.00 1.00
Number of videos 25 25 25
Number of analyzed triples 129 129 129
ReadingNewsPaper
Mean Rank 4.29 7.74 3.69
Mean Reciprocal Rank 0.40 0.65 0.78
Hits @1 0.00 0.62 0.71
Hits @10 0.89 0.69 0.88
Hits @100 1.00 1.00 1.00
Number of videos 30 30 30
Number of analyzed triples 169 169 169
Shot
Mean Rank 3.94 7.33 1.92
Mean Reciprocal Rank 0.42 0.72 0.84
Hits @1 0.00 0.68 0.76
Hits @10 0.94 0.82 0.98
Hits @100 1.00 1.00 1.00
Number of videos 50 50 50
Number of analyzed triples 1696 1696 1696

In Table 2 we compare the performance of the three em-
bedding representations based on the Video KG approach
across various video activity categories highlighting the dif-
ferences in ranking effectiveness. ConvKB consistently out-
performs the other models, achieving the lowest MR and
the highest MRR in most cases, making it the most effec-



tive model for ranking triples correctly. ComplEx follows
as the second-best model, while TransE struggles the most,
failing to rank correctly the videos for most activities. The
Hits@k metric provides valuable insight into how well each
model performs within the top k predictions. Across all ac-
tivities, ConvKB consistently achieves the highest Hits@1
and Hits@10 scores, indicating its superior ability to rank
correct triples in top positions. Overall, although computa-
tionally more expensive, results confirm that ConvKB is the
most effective embedding for activity detection, based on
our proposed Video KG approach.

Conclusions and Future Work
By modeling videos as graphs where nodes represent objects
and edges capture relationships, these representations en-
hance classification performance and improve visual under-
standing. In this paper we have introduced two approaches
that employ knowledge graphs for the task of activity recog-
nition, namely the PE-KG approach, which we further de-
velop into the more general Video KG solution. The pro-
posed approaches not only facilitate recognition but also fos-
ters reasoning over the visual world, allowing models to in-
fer meaningful connections between different elements. Ad-
ditionally, grounding visual concepts in language through
knowledge graphs bridges the gap between vision and lan-
guage, making it easier to interpret and explain model deci-
sions for a human user.

One promising direction for future work is the integration
of additional modalities, such as audio cues, textual meta-
data, and sensor data, to further enrich the contextual rep-
resentation and improve activity recognition performance.
Additionally, exploring graph neural network architectures
to dynamically model temporal evolution within knowledge
graphs could enhance the capture of complex, time-varying
relationships in video data. Finally, real-world applications
would benefit from studies on domain adaptation and scal-
ability, as well as the development of real-time implemen-
tations to facilitate deployment in surveillance, healthcare,
and autonomous systems.
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