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Abstract

Sign language is crucial for the Deaf and Hard-of-Hearing
community because it facilitates visual movement-based
communication. Nevertheless, most are not familiar with it,
rendering interactions with the hearing impaired complicated.
While there has been significant work on languages, for in-
stance, American and Chinese Sign Language, Pakistani Sign
Language (PSL) at the word level has received less atten-
tion and has been studied based on static images. To ad-
dress this, we introduce a deep spatiotemporal network for
word-level PSL recognition from video. It commences by
employing top-k frame extraction to enhance processing ef-
ficiency. Second, the ResNet-101 model is utilized for ex-
tracting deep spatial features from each frame. Subsequently,
we introduce the Adaptive Motion Binary Pattern (AMBP), a
new spatiotemporal feature descriptor that effectively extracts
the spatiotemporal features. These spatial and spatiotemporal
are fused and input into the transformer model that processes
these representations for better recognition. Experimental
evaluations confirm that our framework achieves state-of-the-
art results.

Introduction
Sign language serves as a crucial mode of communication
for the Deaf and Hard-of-Hearing (DHH) community world-
wide (Scott and Dostal 2019). However, sign languages are
not universal; different countries and regions have developed
distinct linguistic structures, each tailored to their cultural
and linguistic contexts (Wheatley and Pabsch 2010). For in-
stance, American Sign Language (ASL) (Bantupalli and Xie
2018) is widely used in the United States, whereas British
Sign Language (BSL) (Bird, Ekárt, and Faria 2020) follows
a completely different grammatical structure. Other widely
recognized sign languages include Indian Sign Language
(ISL) (Attar, Goyal, and Goyal 2023), Arabic Sign Language
(ArSL) (Al-Shamayleh, Ahmad, and Jomhari 2020), Korean
Sign Language (KSL) (Shin et al. 2024), and Chinese Sign
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Language (CSL) (Jiang, Zhang, and Lei 2024), and Pak-
istani Sign Language (PSL) (Arooj et al. 2024). Despite this
diversity, research on automated sign language recognition
has primarily focused on well-established languages such as
ASL and BSL, leaving many regional sign languages, such
as PSL, relatively underexplored.

Pakistan has a large Deaf and Hard-of-Hearing popula-
tion, yet computational research in PSL recognition has re-
ceived minimal attention in computational research (Farooq
et al. 2021). Most existing studies focus on static PSL recog-
nition, where individual signs are identified from still im-
ages (Najib 2024). However, natural communication in PSL,
like in other sign languages, often involves dynamic word-
level recognition, which requires understanding sequential
hand movements and temporal dependencies (Mujeeb et al.
2024). Unfortunately, very few studies have tackled word-
based PSL recognition comprehensively. The ability to rec-
ognize full words, rather than isolated static gestures, is es-
sential for building practical communication systems that
more accurately represent natural sign language. In addition,
dynamic texture descriptors have not been investigated well
for word-level PSL recognition.

The emergence of Cyber-Physical Systems (CPS) (Gunes
et al. 2014; Horvath and Gerritsen 2012) provide an oppor-
tunity to bridge the communication gap between the DHH
community and modern technology by enabling Deaf in-
dividuals to interact seamlessly with computer-based tech-
nologies. CPS integrates physical and computational el-
ements to enhance real-world interactions, making them
highly relevant for assistive technologies. Sign language
recognition, when integrated with CPS, can facilitate inter-
actions between Deaf users and smart systems such as Ama-
zon Alexa, Google Assistant, and other intelligent home au-
tomation systems (Ahmed et al. 2018). This integration can
enhance accessibility, allowing Deaf individuals to commu-
nicate naturally with computer-based technologies in their
everyday lives.

In this paper, we propose a deep spatiotemporal network
for word-level Pakistani Sign Language (PSL) recognition
from video data. Our end-to-end system effectively extracts
deep spatial as well as dynamic spatiotemporal features for
overcoming the previously mentioned challenges. Initially,



we employ the ResNet-101 model (He et al. 2016) for ex-
tracting fine-grained spatial features from individual frames.
Subsequently, we introduce a new dynamic feature descrip-
tor, Adaptive Motion Binary Pattern (AMBP), which plays
a crucial role in efficiently extracting temporal dynamics.
These spatial and temporal features are later fused and pro-
cessed through a Transformer model, which learns effec-
tively a sequence of movements inherent in sign language.
We assessed the performance of our framework on two di-
verse PSL datasets. The results of our experiments prove that
our model outperforms state-of-the-art methods extensively,
confirming its effectiveness for effectively recognizing PSL.

Related Works
Pakistani Sign Language (PSL), similar to other sign lan-
guages, involves a combination of hand shapes, movements,
facial expressions, and spatial orientations to convey mean-
ing. Research on PSL recognition has primarily focused on
static (image-based) gesture recognition, particularly for al-
phabets, characters, and digits, while relatively few stud-
ies have explored dynamic (video-based) recognition, espe-
cially at the word and sentence levels. The following reviews
related work on PSL in these two categories.

Static-Based PSL Recognition. A substantial number of
studies have been conducted on static PSL gesture recog-
nition, where each sign is represented as a still image. Re-
searchers have used traditional machine learning techniques
and deep learning models to classify PSL alphabets and
numbers. For instance, (Ali, Hosseini, and Pervez 2025)
evaluated seven machine learning models on a alphabet PSL
recognition, identifying Random Forest as the most effec-
tive for PSL alphabet recognition on that dataset. Naseem et
al. (Naseem et al. 2019) introduced a convolutional neural
network-based web application that integrates hand tracking
for real-time PSL recognition, achieving nearly perfect ac-
curacy on static Pakistani alphabet signs, and highlighting
the potential of deep learning in real-time PSL applications.
(Arooj et al. 2024) proposed a hybrid PSL recognition model
combining CNNs and SIFT-based feature extraction. Using
Kinect sensor data, their system outperformed SVM-based
and 3D-CNN models. Similarly, (Manzoor et al. 2024) em-
ployed CNNs in a bidirectional PSL and ASL sign language
translation system, integrated in a real-time mobile applica-
tion. Their system integrates CNN-based sign gesture recog-
nition, NLP for text-to-sign conversion, and real-time hand
tracking. Despite these advances, static PSL recognition sys-
tems are inherently limited as they do not account for mo-
tion, transitions between gestures, or real-world variations in
signing speed and environment.

Word-Based and Dynamic PSL Recognition. While
static PSL recognition has been extensively studied, dy-
namic PSL recognition (video-based) remains a relatively
underdeveloped area. Recognizing PSL words and sentences
involves temporal modeling of hand movements, which in-
troduces additional challenges such as signing speed varia-
tions, hand trajectory tracking, and gesture coarticulation.

Some research has attempted to tackle this issue using
Recurrent Neural Networks (RNNs) and Long Short-Term

Memory (LSTM) networks, which are designed for sequen-
tial data. For instance, (Mujeeb et al. 2024) developed a
real-time PSL web application that integrates dynamic PSL
recognition into a browser-based environment. Their ap-
proach employs LSTM networks for recognizing video-
based PSL gestures, using a dataset of 353 PSL videos. The
dynamic recognition model achieved 100% accuracy in clas-
sifying three PSL dynamic gestures. However, despite its
high accuracy, the number of dynamic PSL words recog-
nized is very limited (only three words), which significantly
restricts its usability for broader communication. Later on,
(Javaid and Rizvi 2023) introduced a hybrid multimodal ap-
proach using Action Transformer Networks (SLATN) for
PSL recognition. Their model extracts spatiotemporal fea-
tures and leverages a Transformer-based attention mecha-
nism to simultaneously track hand gestures, facial expres-
sions, and body movements in video sequences. This ap-
proach outperforms traditional activity recognition meth-
ods and achieves a testing accuracy of 82.66% while main-
taining high computational efficiency. Additionally, their
work contributes a new dataset for Pakistani Sign Lan-
guage (PkSLMNM), specifically designed to capture both
manual and non-manual gestures. Furthermore, (Hamza and
Wali 2023) proposed a PSL recognition system based on
video data, leveraging Convolutional 3D (C3D), Inflated 3D
ConvNet (I3D), and Temporal Shift Module (TSM) mod-
els. Due to the limited PSL dataset, the study introduced
a data augmentation pipeline to improve model generaliza-
tion. Results showed that rotation and translation-based aug-
mentation significantly enhanced recognition accuracy, with
C3D achieving 93.33% accuracy as the best-performing
model. The study also highlighted the limitations of TSM
for PSL recognition, as it struggled with movement similar-
ities across different signs.

Proposed Framework
We propose an end-to-end spatio-temporal network for
video-based word-level Pakistani Sign Language recogni-
tion. Figure 1 depicts the proposed framework. The frame-
work starts with the pre-processing operations such as top-k
frame extraction, frame resize and RGB to Grayscale con-
version. Then, a pre-trained ResNet-101 model is used to
extract the deep spatial features from each frame. Simulta-
neously, a novel dynamic feature descriptor named Adaptive
Motion Binary Pattern (AMBP) is proposed to effectively
extract the spatiotemporal features. Finally, these spatial and
spatiotemporal extracted features are concatenated and fed
into a transformer that learns the spatiotemporal representa-
tions to achieve better recognition.

Top-K frame extraction
Key-frame extraction is an important video analysis pro-
cess that enables effective summarization by selecting the
most representative frames. Instead of processing all the
frames, which is computationally expensive and memory-
intensive, key-frame extraction focuses on the identification
of key frames that best capture the changes in the video
content. The process is successfully applied to a number of



Figure 1: Proposed framework for word-level Pakistani sign language recognition from videos.

applications of computer vision such as video summariza-
tion (Apostolidis et al. 2021), and content-based retrieval
(Spolaôr et al. 2020). In this paper, we extract the top-K key
frames of videos which significantly improve the processing
speed. The proposed method leverages a pre-trained deep
neural network, ResNet-101 (He et al. 2016), to extract dis-
criminative spatial features of individual frames. Through
the comparison of consecutive frames, the method identi-
fies key transitions and changes in the video. The contrast
of the extracted features of two consecutive frames is com-
puted to identify the change in the content. Frames with the
maximum differences are the most informative and there-
fore selected as keyframes. The process effectively reduces
redundancy without sacrificing the core visual information
that allows the understanding of the video’s content. Algo-
rithm 1 1 presents the process of extracting the Top-K key
frame. In our work, the K value is set to 30, which is empir-
ically selected.

Algorithm 1: Top-K Key Frame Extraction

1: Input: Video File
2: Output: Top-K Key Frames
3: Procedure Key-Frame(video)
4: for i← 1 to Number-of-Frames do
5: A← ReadFrame(video, i)
6: B ← ReadFrame(video, i+ 1)
7: FeatureA← ExtractResNet101Feature(A)
8: FeatureB← ExtractResNet101Feature(B)
9: DifferenceAB ← FeatureDifference(FeatureA, Fea-

tureB)
10: X[i]← DifferenceAB
11: end for
12: [sortedX, sortingIndices]← Sort(X , ’descend’)
13: End Procedure

Deep Spatial Feature Extraction Using ResNet-101
The ResNet-101 model (He et al. 2016) is employed in ex-
tracting deep spatial features from video frames to provide
robust feature representation for the recognition of Pakistani
Sign Language (PSL). The Residual Network is a state-of-
the-art deep learning model designed to ease the vanishing
gradient issue by introducing residual connections to facili-
tate deeper network training while preserving essential fea-
ture information. The ResNet-101 network consists of mul-
tiple residual blocks, each of which comprises identity map-
pings and shortcut connections to enhance gradient flow.
The model consists of four major stages, with each stage
progressively extracting high-level spatial features through a
series of convolutional, batch normalization, and ReLU acti-
vation layers. These layers capture complex spatial patterns
that are required for discriminating between different sign
gestures. One major advantage of using ResNet-101 for PSL
recognition is that it can handle lighting, scale, and hand
position variations because of its deep hierarchical feature
representation. The convolutional layers act as spatial fea-
ture extractors, while global average pooling reduces dimen-
sionality, keeping the most relevant information. In addition,
batch normalization and ReLU activation introduce nonlin-
earity and accelerate training convergence. In this work, fea-
tures are extracted from the GAP layer of ResNet-101, en-
suring a compact and effective feature representation for
PSL recognition.

Adaptive Motion Binary Pattern Based
Spatiotemporal Features Extraction
We propose Adaptive Motion Binary Pattern (AMBP) based
Spatiotemporal feature descriptor that is able to effectively
capture motion dynamics and spatial texture information
from video frames. Unlike traditional texture-based descrip-
tors such as Local Binary Pattern (LBP) (Ojala, Pietikainen,



Figure 2: Spatiotemporal feature extraction using AMBP.

and Maenpaa 2002), which predominantly capture static tex-
tures, AMBP extends these methods by incorporating mo-
tion differences between three consecutive frames. In or-
der to describe dynamic information from video data, re-
searchers have already proposed techniques like Volume Lo-
cal Binary Patterns (VLBP) (Zhao and Pietikainen 2007),
Local Binary Patterns from Three Orthogonal Planes (LBP-
TOP) (Zhao and Pietikainen 2007), and adaptive local mo-
tion descriptor (ALMD) (Uddin et al. 2017). Neverthe-
less, these methods inherit the same drawbacks as conven-
tional LBP, namely sensitivity to illumination changes and
noise. To overcome these limitations, we present an adap-
tive threshold mechanism to improve adaptability. As a re-
sult, the proposed AMBP proves to be robust to illumination
changes, noise, and motion.

AMBP derives motion features by analyzing pixel inten-
sity differences among three continuous frames: previous
frame, current frame, and next frame. First, every frame is
divided into small local grids, where pixel intensity values
are extracted. To give adaptability, a dynamic threshold (th)
is derived from the absolute difference between the center
frame center pixel Cc and neighboring pixels Ci, so that fea-

ture extraction is robust. The threshold is provided by:

th =
1

n

n∑
i=1

|Cc − Ci| (1)

Once the threshold is determined, a binary pattern for ev-
ery pixel is computed through a comparison of the previ-
ous frame, current frame, and next frame neighboring pix-
els’ intensity, with the current frame center pixel intensity
and the threshold value. The intensity change is set to 1 if it
is within the range of the threshold; otherwise, it is set to 0.
This generates a binary motion map that highlights regions
of significant pixel intensity differences, noting motion be-
tween frames. To encode motion features effectively, the bi-
nary maps from the previous, current, and next frames are
processed using a bitwise XOR operation, given as:

AMBPn,r(xc, yc) =
n∑

i=1

(
s(Pi − Cc)⊕ s(Ci − Cc)

⊕s(Ni − Cc)
)
× 2i

(2)

s(a) =

{
1, if − th ≤ a ≤ th,

0, otherwise.
(3)

Where Pi, Ci, and Ni are neighboring pixel intensities
in the previous, current, and next frames, respectively, and
⊕ denotes the XOR operation. This provides a compact but
descriptive motion pattern representation. The resulting bi-
nary map is converted to a decimal number. Figure 2 illus-
trates the process of AMBP. AMBP presents several advan-
tages over other feature descriptors, by incorporating adap-
tive thresholding, it can handle illumination variation and
noise quite well, and it is robust to feature extraction under
different environments. The combination of motion encod-
ing and spatial texture representation enhances its ability to
detect fine-grained movements in sign language recognition.

Feature Fusion
The pre-trained ResNet-101 model processes a 224×224×3
RGB hand sign frame as input, capturing spatial details and
generating a 1D feature vector with 2048 features. Mean-
while, the AMBP descriptor processes three consecutive
frames (previous, current, and next), each sized 224 × 224,
to extract spatiotemporal features, resulting in a 1D feature
vector with 256 features. After extracting both deep and spa-
tiotemporal features, we fuse them to produce a final feature
vector of size 1 × 2304 per frame. Therefore, for the top-k
key frames of a video, we obtain a k × 2304 feature matrix.
This feature matrix is then used as input for the transformer
model.

Learning Spatiotemporal Features Using
Transformer Model
Initially, Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks were employed to
model spatiotemporal dynamics of the video data to perform
various recognition tasks such as gesture and action recogni-
tion (Hu et al. 2018; Cifuentes et al. 2019). These methods



effectively encoded sequential information but suffer from
the issues of vanishing gradients, parallel processing issues,
and modeling long-term temporal dependencies. Transform-
ers initially emerged in the domain of Natural Language Pro-
cessing (NLP) applications (Gillioz et al. 2020) and later
moved to computer vision applications (Han et al. 2022)
to excel at modeling long-range interactions utilizing self-
attention mechanisms. The Transformer-based models were
recently employed in the community of time series to carry
out forecasting and regression tasks (Wu et al. 2020; Born
and Manica 2023) but their application to learn spatiotem-
poral features from the extracted features of the videos is
still comparatively limited. To mitigate the drawbacks of
RNN and LSTM-based models, our approach introduces a
Transformer-based model designed to learn spatiotemporal
representation from the extracted features of the videos to
achieve effective word-level PSL recognition. The proposed
Transformer model comprises four components: embedding
layer, positional encoding, Transformer encoder, and predic-
tion layer. At first, we employ a 1D convolution-based em-
bedding layer with dmodel filters on the input features from
ResNet-101 model and AMBP. More specifically, given the
input feature sequence X ∈ Rk×d, where k is the number of
frames and d is the dimension of the features, the embedded
representation Xembed is computed as:

Xembed = Conv1D(X) (4)

Afterward, to incorporate temporal relationship crucial for
sequential data modeling, positional encoding is added to the
embeddings. Specifically, we utilize sinusoidal positional
encoding defined by:

PosEnc(po,2i) = sin
( po

100002i/dmodel

)
, (5)

PosEnc(po,2i+1) = cos
( po

100002i/dmodel

)
(6)

where p indicates the position of the feature in the se-
quence, i represents the dimension index, and dmodel de-
notes the dimension of the embedding vector. This posi-
tional encoding enables the model to retain sequential or-
dering, addressing the permutation-invariance issue inherent
to standard Transformer architectures. The Transformer en-
coder consists of multiple layers, each comprising a multi-
head self-attention sub-layer followed by a position-wise
feed-forward neural network. The multi-head self-attention
mechanism computes attention weights between every pair
of positions, effectively capturing global contextual depen-
dencies within the entire sequence. Mathematically, the self-
attention mechanism is expressed as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (7)

where queries Q, keys K, and values V are linear projec-
tions of the embedded input, and dk is the dimensionality
of the keys. The outputs from multiple attention heads are
concatenated and subsequently projected linearly to obtain
the final output. In this work, we employed 3 encoder lay-
ers, which is chosen empirically. Each Transformer encoder
layer also contains a feed-forward neural network, which is

composed of two fully-connected layers with a nonlinear ac-
tivation, along with residual connections and layer normal-
ization for stable training. Finally, extracted features from
the Transformer encoder are fed into the prediction layer
designed for multiclass classification. This prediction layer
consists of a dense layer with a softmax activation function
to output probability distributions over different hand sign
classes. To reduce potential overfitting during training, we
integrate a dropout layer with a dropout rate of 0.2 before the
dense layer. The training procedure employs the categorical
cross-entropy loss function, and the Adam as optimizer, with
a batch size of 32, a momentum value of 0.9, and a learning
rate of 1× 10−4.

Experiments
In this section, we analyze our proposed framework’s per-
formance. First, we provide a description of the datasets and
experimental conditions. Next, we perform an ablation study
for assessing the contribution of various components of our
framework. Finally, we demonstrate a comparison of our ap-
proach’s performance with state-of-the-art techniques.

Experimental Settings
We evaluated our framework using the PkSLMNM dataset
(Javaid and Rizvi 2023) and the PSL dictionary dataset
(Hamza and Wali 2023). The PkSLMNM dataset comprises
665 videos of 180 individuals. The dataset contains 7 classes
of Pakistani hand signs, which include bad, best, sad, glad,
scared, stiff, and surprise adjectives. In this dataset, 80% of
data were used for training the model while 20% of data
were used for testing. On the other hand, the PSL dictionary
dataset consists of 160 samples for 80 words. The dataset is
split into 80 training samples and 80 test samples. To evalu-
ate the performance of the proposed model we used accuracy
as an evaluation metric, which is represented as follows.

Accuracy =
Number of Correct Predictions

Total Number of Samples
(8)

The experiment was conducted on a PC running Win-
dows 10 with a 64-bit architecture, equipped with an Intel(R)
Core(TM) i7-10750H CPU and 16GB of RAM.

Ablation Study
Figure 3 illustrates an ablation experiment on how each
component affects the accuracy of our proposed deep spa-
tiotemporal network. The experiment shows that incorporat-
ing Adaptive Motion Binary Pattern (AMBP) with ResNet-
101 GAP features improves the accuracy. This notable im-
provement indicates the necessity of incorporating temporal
dynamics along with spatial features, and it also attests to
the effectiveness of our integrated approach for handling the
complexities of sign language recognition.

Figure 4 represents the result of varying the number of
keyframes on the recognition of sign language. Accuracy
peaks with 30 keyframes, demonstrating an optimal balance
between detail capture and computational efficiency. How-
ever, increasing to 35 keyframes shows a slight decrease in
accuracy. This experiment underscores the importance of
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Figure 3: Assessing the effectiveness of different components in the proposed framework.
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optimal key frame selection for efficient and effective sign
language recognition.
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Figure 5: Investigating the accuracy of the transformer
model by varying the number of encoder layers.

Then, we experimented with varying the number of lay-
ers for the encoder layer of the Transformer architecture,
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Figure 6: Investigating the accuracy of the transformer
model with different component.

as depicted in Figure 5. The model’s accuracy is best with
three layers for the encoder, reaching a peak accuracy of
85.7% for PkSLMNM dataset and 81.25% for PSL dictio-
nary dataset, respectively.

Figure 6 shows a comparison between three configura-
tions of Transformer models on PkSLMNM and PSL dic-
tionary datasets. Notably, the proposed Transformer model
exhibits superior performance. This indicates that the inte-
gration of both 1D convolutional layers and positional en-
coding is crucial for extracting the complexities of Pakistani
sign language.

Fig. 7 illustrates a comparison of our proposed trans-
former model’s accuracy with other traditional machine
learning methods, such as SVM, Random Forest, and Ada
Boost (Uddin, Denny, and Joolee 2022), and with various
deep learning networks, such as 1D CNN (Mendez, Uddin,
and Joolee 2022), BiLSTM (Uddin, Joolee, and Lee 2020),
GRU (Subramanian et al. 2022), and Encoder-Decoder Net-
works (Uddin, Denny, and Joolee 2022). From the exper-
iment, it is clear that our proposed model outperforms all
these alternatives with a huge margin, highlighting its bet-
ter capability for extracting and processing features neces-
sary for correctly identifying word-level Pakistani Sign Lan-
guage.
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Comparison with State-of-the-art Approaches
Table 1 shows a comparative analysis of our proposed ap-
proach with various state-of-the-art models for PkSLMNM
Dataset and PSL Dictionary Dataset. The results indicate
that our proposed approach achieves the best accuracy,
85.7% on PkSLMNM Dataset and 81.25% on PSL Dictio-
nary Dataset, compared with models such as C3D (Hamza
and Wali 2023), TSM (Hamza and Wali 2023), I3D (Hamza
and Wali 2023), and SLATN (Javaid and Rizvi 2023). No-
tably, even though models like I3D achieve 77.50% accuracy
on the PSL Dictionary Dataset, they are still below our ap-
proach. Such a significant improvement in performance in-
dicates the potential of our framework for recognizing word-
level Pakistani Sign Language as a superior choice for real-
time applications for sign language interpretation.

Dataset (%)
Method PkSLMNM PSL Dictionary
C3D 78.9 66.67
TSM 75.9 33.75
I3D 78.2 77.50
SLATN 82.66 –
Ours 85.7 81.25

Table 1: Performance comparison in terms of Accuracy
(%) between proposed framework and other State-of-the-art
models.

Conclusion
This work significantly contributes to Pakistani Sign Lan-
guage recognition with a robust deep spatiotemporal net-
work capable of interpreting dynamic sign language ef-
fectively. Our proposed approach achieves better accuracy
than state-of-the-art models on comprehensive PSL datasets.
These findings prove the effectiveness of combining deep
spatial and dynamic temporal features. It can revolution-
ize tools for communication among the Deaf and Hard-of-
Hearing, and bring them closer to society through greater

interactions with digital and cyber-physical devices. Our fu-
ture work will focus on enhancing the model’s efficiency and
exploring its potential for real-time PSL translating devices.
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Spolaôr, N.; Lee, H. D.; Takaki, W. S. R.; Ensina, L. A.;
Coy, C. S. R.; and Wu, F. C. 2020. A systematic review on
content-based video retrieval. Engineering Applications of
Artificial Intelligence, 90: 103557.
Subramanian, B.; Olimov, B.; Naik, S. M.; Kim, S.; Park,
K.-H.; and Kim, J. 2022. An integrated mediapipe-
optimized GRU model for Indian sign language recognition.
Scientific Reports, 12(1): 11964.
Uddin, M. A.; Denny, R.; and Joolee, J. B. 2022. Deep Spa-
tiotemporal Network Based Indian Sign Language Recogni-
tion from Videos. In International Conference on Informa-
tion Technology and Applications, 171–181. Springer.
Uddin, M. A.; Joolee, J. B.; Alam, A.; and Lee, Y.-K. 2017.
Human action recognition using adaptive local motion de-
scriptor in spark. IEEE Access, 5: 21157–21167.
Uddin, M. A.; Joolee, J. B.; and Lee, Y.-K. 2020. Depression
level prediction using deep spatiotemporal features and mul-
tilayer bi-ltsm. IEEE Transactions on Affective Computing,
13(2): 864–870.
Wheatley, M.; and Pabsch, A. 2010. Sign Language in Eu-
rope. In Proceedings of sign-lang@LREC 2010.
Wu, S.; Xiao, X.; Ding, Q.; Zhao, P.; Wei, Y.; and Huang,
J. 2020. Adversarial sparse transformer for time series fore-
casting. Advances in neural information processing systems,
33: 17105–17115.
Zhao, G.; and Pietikainen, M. 2007. Dynamic texture recog-
nition using local binary patterns with an application to fa-
cial expressions. IEEE transactions on pattern analysis and
machine intelligence, 29(6): 915–928.


