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Abstract

Cyber-physical systems (CPS) have traditionally relied on
rule-based mechanisms and machine learning models for
context awareness. However, these approaches often struggle
with dynamic adaptation, multimodal data integration, and
real-time decision-making in complex environments. With
the emergence of large language models (LLMs), we argue
that CPS should adopt LLMs as adaptive cognitive layers
capable of interpreting, reasoning, and responding to real-
world contexts in real time. This position paper explores the
paradigm shift introduced by LLMs, discusses their advan-
tages and limitations, and presents a vision for their integra-
tion into next-generation CPS.

Introduction
Cyber-Physical Systems (CPS) (Gunes et al. 2014; Horvath
and Gerritsen 2012) are integrated networks where physical
processes interact with computational and communication
systems. These systems are widely used in various domains,
such as healthcare (Medjahed et al. 2011; Lalwani, Saleh,
and Salam 2025), transportation (Xiong et al. 2015), energy
(Lu 2018), and manufacturing (Scholze and Barata 2016).

Context in CPS is a dynamically aggregated collection
of information defining conditions in which a system op-
erates. It encompasses user context (i.e., identity, prefer-
ences, behavior, and intent) (Salam et al. 2023), system
context (i.e., device status, operational state, communica-
tion status, power consumption, and hardware or software
reliability), environmental context (i.e., physical conditions
such as temperature, humidity, pressure, and vibration, as
well as location-based data and infrastructure state), secu-
rity context (i.e., threat intelligence, encryption, authenti-
cation, and access control policies), temporal context (i.e.,

*These authors contributed equally.
†Corresponding author: Hanan Salam.

This work is supported in part by the NYUAD Center for Artificial
Intelligence and Robotics, funded by Tamkeen under the NYUAD
Research Institute Award CG010.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time-sensitive operations, historical data, and predictive an-
alytics), and social-organizational context (i.e., collabora-
tion data, business policies, and stakeholder interactions)
(Gaur et al. 2019). Contextual information is vital in en-
hancing CPS functionality since it assists in better decision-
making, optimizes processes, and makes systems respon-
sive to varied environmental and running conditions (Sahlab,
Jazdi, and Weyrich 2021). For example, in industrial au-
tomation, CPS can alter machine operation based on temper-
ature variations in a bid to ensure efficiency (Sahlab, Jazdi,
and Weyrich 2021), while in autonomous vehicles, traffic
congestion variations influence navigation plans (Mortlock
et al. 2024).

Context awareness (Dey 2001) is a fundamental require-
ment in CPS, allowing systems to adapt their behavior based
on real-time environmental conditions, sensor data, and hu-
man interactions (Ivanov, Weimer, and Lee 2018; Scholze
and Barata 2016). Traditional context-aware approaches in
CPS rely on rule-based systems (Scholze and Barata 2016)
and machine learning models (Wasim et al. 2021; Mortlock
et al. 2024). However, these methods face limitations in:
(1) handling dynamic environments where predefined rules
become obsolete (Zhang et al. 2024), (2) integrating multi-
modal data, including numerical sensor inputs, human com-
mands, and environmental changes (Alsamhi et al. 2024;
Schirner et al. 2013; Noorani et al. 2024; Medjahed et al.
2011), and (3) scalability and adaptation, particularly in
heterogeneous, real-world CPS deployments (Sahlab, Jazdi,
and Weyrich 2021).

The emergence of large language models (LLMs) such as
GPT-4 (OpenAI 2023), PaLM (Chowdhery et al. 2022), and
LLaMA (Touvron et al. 2023) marks a transformative shift
in CPS. LLMs can process vast amounts of unstructured
information, generate adaptive responses, and generalize
across novel contexts with minimal retraining. Researchers
have begun exploring LLMs for CPS applications, includ-
ing CPS requirement extraction (Jin et al. 2024), CPS de-
sign support (Choaib et al. 2024), and human behavior anal-
ysis during the CPS design phase (Burgueño et al. 2024).
Additionally, LLMs are being applied to develop context-
specific advisory services, such as agricultural risk assess-



ment tailored to local legislation and regulations (Stoyanov
et al. 2023). However, these efforts remain limited in their
ability to explicitly address dynamic context adaptation, as
current works primarily focus on automating manual pro-
cesses or providing domain-specific recommendations with-
out fully capturing contextual dynamics. For instance, (Jin
et al. 2024) highlight the limitations of LLMs in extract-
ing precise CPS-specific system requirements, emphasizing
challenges in capturing specialized concepts and prevent-
ing hallucinations. Similarly, (Choaib et al. 2024) demon-
strate how LLMs streamline CPS design through context-
aware recommendations, yet their approach does not di-
rectly address real-time adaptive context management. Fur-
thermore, (Burgueño et al. 2024) propose ontology-driven
methods for identifying uncommon human behaviors in CPS
design, showing promise for robust interaction scenarios but
not directly tackling real-time contextual adaptation. Like-
wise, (Stoyanov et al. 2023) present LLM-based advisory
services for agriculture, though their approach focuses on
static advisory contexts rather than dynamic, adaptive in-
terventions. Thus, explicitly integrating LLMs for adaptive,
context-aware interventions in CPS remains a significant yet
largely unexplored research opportunity.

In this paper, we propose a new LLM-based context-
awareness paradigm for CPS. We propose LLMs as cog-
nitive layers in CPS for facilitating real-time adaptation,
multimodal reasoning, and human-centric decision-making.
This paradigm addresses several critical limitations in tra-
ditional rule-based and machine learning-based context-
awareness solutions. Specifically, it resolves the inflexibility
and lack of scalability associated with predefined rules by
benefiting from the zero-shot and few-shot adaptability of
LLMs, enabling systems to learn to cope with new and un-
foreseen situations quickly without requiring substantial re-
training. Additionally, as traditional models typically do not
deal efficiently with the fusion of numerical sensor inputs,
textual commands, and environmental information, the pro-
posed solution successfully addresses this multimodal data
fusion issue. LLMs naturally support multimodal fusion, fa-
cilitating simultaneous and coherent handling of various in-
put modalities to achieve a holistic contextual understand-
ing. Yet another critical issue overcome by our paradigm is
the limited interpretability and human-oriented usability in
traditional black-box machine learning models. LLMs has
the potential to provide naturally human-oriented explain-
ability, facilitating transparency, trust, and ease of interac-
tion with system operators (Zhao et al. 2024). Finally, the
proposed paradigm considerably minimizes the traditional
overhead in maintaining and updating rule-based or com-
plicated machine learning models by benefiting from quick
deployment and iterative refinement through prompt engi-
neering. These advantages collectively represent a substan-
tial advancement in the robustness, adaptability, and usabil-
ity of context-aware CPS.

Traditional Context Awareness in CPS
Context awareness within CPS has traditionally employed
rule-based systems (Takatsuka et al. 2014; Sol et al. 2018)
and machine learning techniques (Wasim et al. 2021; Mort-

lock et al. 2024) to detect and respond to contextual fac-
tors such temperature fluctuations in industrial automation
(Sahlab, Jazdi, and Weyrich 2021), traffic density variations
in autonomous vehicles (Mortlock et al. 2024), and physio-
logical state shifts in wearable health monitors (Gaur et al.
2019). These approaches integrate sensor-derived informa-
tion with computational models or rules that trigger auto-
mated responses based on predefined conditions. This sec-
tion reviews relevant research on traditional context aware-
ness in CPS.

Rule-Based Context Awareness

Rule-based systems are commonly applied in context-aware
CPS to support decision-making based on pre-defined sit-
uations. The systems are based on a rigid if-then-else
paradigm, in which responses are activated based on the
occurrence of defined situations. For instance, RuCAS by
(Takatsuka et al. 2014) utilizes a context-aware manage-
ment technique with rule-based services supported through
cloud computing and machine-to-machine (M2M) commu-
nication. It enables users to author context-aware rules with
web-service information using an Event-Condition-Action
(ECA) model to perform automated actions. Its limitation in
utilizing static rules limits adaptability with context changes
that must be updated manually, suggesting that it cannot
adapt automatically through learning. (Sol et al. 2018) em-
ployed context-aware CPS to regulate and monitor energy
consumption of lighting and electrical conditions in smart
buildings so that energy efficiency would be achieved at
minimal user discomfort. In their findings, traditional build-
ing integration with CPS technology remained economically
infeasible due to upfront costs and incompatibilities with in-
frastructure. Furthermore, their rule-based system prevented
real-time feedback-based adaptive learning. A more user-
oriented solution was offered by (Lu 2018) with a game-
based, adaptive IoT-based CPS to increase user participation
in energy savings through virtual interactions with smart-
home decisions. Though effective in triggering user engage-
ment, this approach had scalability challenges with signif-
icant user involvement required to incorporate other con-
text factors. User engagement changes also limited automa-
tion features of the system. (Gaur et al. 2019) proposed the
Context-Aware Programming (CAP) framework to simplify
context-aware application programming in CPS using ad-
vancements in Wireless Sensor Networks (WSNs) and com-
munication protocols. The CAP framework is dynamically
configurable but is not scalable due to its rule-based struc-
ture in highly dynamic situations. Later, (Daun and Tenber-
gen 2023) proposed an ontological paradigm to represent the
context in CPS with explicit context dependency modeling.
While ontologies offer structured adaptability compared to
rule-based approaches, they require frequent updation with
new context variables and lack real-time adaptability. In ad-
dition, (Asmat et al. 2023) elaborated on context uncertainty
by introducing an ontology-based model that seeks to in-
crease reliability and context interpretation in CPS. The sys-
tem’s reliance on pre-defined uncertainty domains limits it
to deal with unforeseen or new situations.



Limitations: Rule-based systems ensure predictability
and dependability, with the cost of various limitations, mak-
ing the rule-based methodology less effective in dynamic
and intricate situations.

Inability of Dynamic Adaptation. The primary limita-
tion of rule-based systems is that they are inflexible because
they cannot handle new or unforeseen situations without hu-
man intervention. This ongoing need to manually update
decreases long-term scalability in dynamic settings such as
smart cities, industrial automation, and security (Gaur et al.
2019; Takatsuka et al. 2014).

Scalability. Another significant limitation lies in scala-
bility. An increasing number of contextual variables raises
complexity in managing and updating rule sets. For in-
stance, in industrial automation, multiple sensors continu-
ously provide real-time feedback from machines, the envi-
ronment, and human operators, requiring rule-based systems
to handle numerous conditions to encompass all possible
states (Sahlab, Jazdi, and Weyrich 2021). This complexity
grows exponentially, slowing real-time decision-making ef-
ficiency. Additionally, conflicting rules arising from interac-
tions among conditions can lead to unintended system be-
havior, necessitating further manual intervention (Sol et al.
2018).

Noisy and Incomplete Data. Rule-based systems also
struggle with dealing with noisy and incomplete data. For in-
stance, sensor readings in healthcare monitoring (Medjahed
et al. 2011) and autonomous driving (Mortlock et al. 2024)
are usually frequently noisy, incomplete, or erroneous. The
traditional rule-based models cannot effectively fill missing
values or handle imprecise input and thus make incorrect or
suboptimal decisions in some instances (Daun and Tenber-
gen 2023). Unlike probabilistic and machine learning-based
models, rule-based systems lack the capability to dynami-
cally adapt decisions with historical patterns or probabilistic
reasoning (Noor et al. 2023).

Maintenance Overhead. Another significant limitation
of is maintenance overhead. Rules have to be updated and
tuned by hand to maintain pace with system changes and
emergent conditions. It is a time-consuming and labor-
intensive exercise that requires a high degree of domain-
specific knowledge and reduces flexibility as well as in-
creases cost (Takatsuka et al. 2014).

Computational Inefficiency. Handling input via large
and complex rules significantly increases system delay and
compromises real-time performance in applications with a
requirement for rapid responsiveness such as industrial au-
tomation, cyber threat detection, and emergency response
(Liao et al. 2021). Consequently, modern-day CPS tend to
adopt hybrid approaches that combine rule-based reasoning
with machine learning, and probabilistic techniques to im-
prove adaptability and efficiency (Wasim et al. 2021; Mort-
lock et al. 2024).

Machine Learning-Based Context Awareness
Machine learning (ML) enhances context perception in CPS
by learning from data to make effective responses in various
applications. For instance, (Wasim et al. 2021) introduced
a deep learning framework to monitor campus through a

Convolutional Neural Network (CNN) to detect academic
activity in video streams with high accuracy. In industrial
automation, (Sahlab, Jazdi, and Weyrich 2021) proposed
a cyber-physical system using semantic tagging and graph
modeling to enhance real-time decision-making with lim-
ited scalability due to standardization issues among indus-
tries and complexity in handling heterogeneous informa-
tion sources. (Liao et al. 2021) developed an attention-
based industrial CPS event recommendation model that, al-
though novel in machine learning applications, suffers from
edge deployment due to high processing demands and lack
of generalizability due to pre-defined context categories.
(Hsieh 2022) explored using Discrete Timed Petri Nets to
make cyber-physical production systems (CPPS) deadline-
aware and future-state-aware. The model is formalized but
not computationally efficient and requires high-level hu-
man configuration at the expense of adaptability. (Noor
et al. 2023) introduced an intelligent security model to iden-
tify cyber threats in real-time in CPS. The model requires
large labeled datasets and is not highly scalable because it
is computationally intensive. (Mortlock et al. 2024) intro-
duced CASTNet, a spatio-temporal motion prediction model
used in autonomous driving. Although it improves real-
time decision-making by detecting context changes, it has
high processing demands and therefore cannot be imple-
mented in low-resource embedded systems. Finally, (Maity
et al. 2024) presented the Data Context-Driven Model Re-
duction (DCDMR), a two-stage framework that pre-trains
context-aware submodels offline and dynamically adapts at
run time using regression techniques. Employed to control
the Medtronic 670G Artificial Pancreas, DCDMR surpasses
traditional methods like RNNs with lower training sample
requirements and enables faster as well as safer decision-
making in CPS.

Limitations: Machine learning-based CPS, despite the
numerous benefits, also suffer from various limitations and
challenges.

Data Dependency. One of the major problems in ML-
based CPS is the dependence on data. ML models are trained
to give accurate predictions from enormous amounts of
high-quality labeled data. In most applications in CPS, such
as in industrial automation and smart monitoring, the acqui-
sition and labeling of enormous datasets are time-consuming
and expensive. The efficacy of ML models also reduces in
the case of noisy, incomplete, and biased datasets, leading
to unreliable decision-making. This problem is most pro-
nounced in security-critical CPS, in which erroneous deci-
sions cause failure to detect cyber threats and flag legitimate
activity as anomalies (Noor et al. 2023).

Computational Complexity. Another significant limita-
tion lies in the problem of the computational complexity
(Mortlock et al. 2024). Many current ML techniques, such
as deep learning and reinforcement learning, are computa-
tionally heavy, and real-time deployment in most situations,
particularly in constrained edge devices and IoT-based CPS,
is problematic. The greater the model’s size, the greater the
processing, and the greater the energy and the latency. For
instance, in event-based industrial CPS, (Liao et al. 2021)



determined group recommendation models based on the use
of the attention mechanism provide higher precision, but the
heavy processing burden makes them inappropriate in real-
time applications.

Interpretability and Explainability. Interpretability and
explainability are also major concerns in ML-based CPS.
Traditional rule-based models offer transparent, inter-
pretable logic, while deep models are black boxes whose
reasoning to specific decisions are difficult to follow.
Decision-making transparency concerns in the case of ap-
plications in driving and healthcare monitoring could impair
trust and slow regulation approval (Wasim et al. 2021).

Deployment Constraints. Deployment constraints fur-
ther limit ML-based CPS. Many ML models are trained in
controlled environments but fail to generalize well in real-
world, dynamically evolving CPS applications. (Noor et al.
2023) highlighted this issue in cybersecurity-based CPS,
where machine learning models effectively detect known
threats but struggle with zero-day attacks and novel cyber
threats due to their reliance on historical data. Similarly,
(Sahlab, Jazdi, and Weyrich 2021) found that while ML
techniques improved context awareness in industrial CPS,
they still required periodic retraining to adapt to changing
operational conditions.

LLMs as Cognitive Layers for Context
Awareness

To tackle the limitations of traditional context-awareness
in CPS, we propose a new LLM-driven context-awareness
paradigm that leverages LLMs (e.g., GPT-4, Gemini,
LLaMA) as adaptive context processors to dynamically in-
terpret, predict, and respond to contextual changes in CPS.
The LLM acts as a decision support layer, processing mul-
timodal data (text, sensor feeds, historical logs) and gener-
ating real-time context-aware recommendations or interven-
tions. In this paradigm, LLMs act as adaptive cognitive lay-
ers that enable: (1) Multimodal Integration & Reasoning, (2)
Dynamic Real-World Context Interpretation (3) Generation
of Adaptive Context-Aware Interventions, and (4) Human-
Centric Adaptation. This cognitive layer serves as an intel-
ligent middleware between the physical system (actuators,
sensors) and high-level decision-making processes, making
CPS more autonomous, context-aware, and responsive (see
Figure 1).

Multimodal Integration & Reasoning. LLMs can pro-
cess and integrate information from multiple modalities,
including structured (sensor data) and unstructured (text,
speech, images) data. text, images, audio, and sensor data, to
enhance CPS decision-making (Wu et al. 2024). The advan-
tage of LLMs in multimodal data fusion is due to their abil-
ity to align multimodal data through shared representations,
using architectures such as transformers and cross-attention
mechanisms (Tsimpoukelli et al. 2021). Additionally, multi-
modal embeddings enable CPS to capture cross-domain cor-
relations, improving robustness in uncertain environments.
This is useful in various CPS applications such as in au-
tonomous driving where camera feeds, LiDAR signals, GPS
data, and textual navigation inputs must be processed simul-

taneously in order to generate comprehensive driving strate-
gies (Zhou et al. 2024). Similarly, in smart healthcare CPS,
this allows LLMs to analyze patient vitals, medical images,
and clinical notes efficiently in order to provide holistic di-
agnostic assistance (Zhang et al. 2015). Recent related work
further expands on LLM capabilities by exploring “Penetra-
tive AI,” where LLMs leverage their embedded common-
sense world knowledge to reason directly over sensory data
from IoT devices (Xu et al. 2024). This approach showcases
the unique proficiency of LLMs in interpreting and reason-
ing about real-world physical tasks. It also highlights their
potential to incorporate human-level knowledge and intu-
ition into CPS, enabling novel applications beyond tradi-
tional text-based scenarios.

Dynamic Real-World Context Interpretation. The ca-
pacity and efficiency of LLMs in multimodal integration
and reasoning allows them to be used as efficient tools to
process inputs to infer real-time context accurately. For in-
stance, contextual embeddings generated by LLMs can be
used to maintain historical system states and infer dependen-
cies between events (Enoasmo et al. 2025). This makes them
particularly useful in inferring context in industrial CPS,
where unexpected system faults can be diagnosed by ref-
erencing previous system logs and sensor data. For instance,
recent work (Abshari, Fu, and Sridhar 2024) demonstrated
that Retrieval-Augmented Generation (RAG) recently intro-
duced for improving LLMs, can automatically extract phys-
ical invariants from CPS documentation, significantly en-
hancing anomaly detection capabilities in industrial CPS
by addressing traditional limitations such as manual invari-
ant definition, scalability issues, hallucination, and concept
drift.

Generation of Adaptive Context-Aware Interventions.
One of the most promising applications of LLMs in CPS
is their ability to generate adaptive, context-aware interven-
tions in response to real-time data. Traditional CPS which
rely on manually defined rules or pre-trained models for con-
text awareness lack adaptability in dynamic environments
(Dey 2001). The ability of LLMs to perform zero-shot and
few-shot learning and thus generalize across domains, al-
lows them to adapt to unseen scenarios without extensive
retraining (Radford et al. 2019), thus dynamically generat-
ing tailored responses based on evolving contextual factors.
In high-stakes CPS applications such as autonomous vehi-
cles, healthcare, and industrial automation, real-time adap-
tation is critical. For example, in smart grids, LLMs can ana-
lyze electricity consumption patterns and generate dynamic
energy-saving strategies based on demand fluctuations and
external environmental conditions. Similarly, in autonomous
healthcare systems, LLMs can assist in generating personal-
ized real-time alerts and treatment recommendations by an-
alyzing patient vitals, historical data, and contextual factors
(Nazi and Peng 2024). Similarly, an LLM integrated into
an autonomous vehicle system can interpret contextual vari-
ables like changing road conditions, sensor feedback, and
human driver commands to generate adaptive control strate-
gies (Kendall, Gal, and Cipolla 2018; Kendall et al. 2019).
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Figure 1: Block diagram of LLM-driven context-awareness in CPS illustrates a structured integration of multimodal sensor
inputs, data preprocessing, and cognitive processing via LLMs. It highlights how sensors capture numerical data, IoT read-
ings, textual commands, and visual data, which are preprocessed through filtering and multimodal fusion. Central cognitive
processing by LLMs provides adaptive, real-time reasoning and context interpretation. Human interaction further enriches
decision-making, ensuring transparency and validation. Finally, actuators respond with appropriate physical actions, forming
an interactive loop that enhances the responsiveness, adaptability, and human-centric nature of CPS applications.

Human-Centric Adaptation. LLMs facilitate natural
language interaction in CPS, enabling operators to dynam-
ically query, refine, and adapt system behaviors, thereby
improving transparency, usability, and trust (Amershi et al.
2019). Unlike traditional CPS, which limit interactions to
predefined interfaces, LLM-driven systems offer context-
aware and human-centric adaptation. For instance, in smart
manufacturing, human operators can provide high-level in-
structions to dynamically adjust machine parameters, en-
hancing both efficiency and safety. Similarly, autonomous
transportation systems can adapt driving strategies based
on passenger input, improving user experience. However,
to address challenges such as generating infeasible or un-
safe actions, recent approaches like CPS-LLM integrate
instruction-tuned LLMs with system dynamics estimation,
ensuring that generated action plans remain safe, personal-
ized, and practically viable in critical domains such as auto-
mated insulin delivery (Banerjee et al. 2024).

Challenges and Open Research Questions
As LLMs are integrated into CPS as adaptive cognitive
layers, some problems are to be addressed to enhance
their efficiency, efficacy, and real-world usability. Tradi-
tional context-aware CPS, rooted in rule-based and machine
learning-based mechanisms, are found to be limited in scal-
ability, adaptability, and real-time responsiveness. Despite
the real-time decision-making, semantic reasoning, and in-
tegration of multimodality offered by LLMs, deployment in
CPS raises major open research issues in terms of computa-
tional efficiency, protection of the data, generalization, and

integration in real-time CPS.

Computational Overhead and Energy Efficiency: One
of the primary challenges is computational overhead and en-
ergy efficiency. LLMs, particularly deep transformer-based
models, require significant computational resources to pro-
cess vast amounts of contextual data. This can be prohibitive
in resource-constrained environments such as industrial au-
tomation systems, edge devices, and IoT networks. Open re-
search questions include: How can LLMs be optimized for
efficient real-time execution in CPS? Can knowledge dis-
tillation or model compression techniques be leveraged to
reduce computational load while preserving decision accu-
racy?

Adaptability: Another significant challenge lies in real-
time adaptability and inference latency. CPS applications,
including autonomous driving, smart grids, and industrial
automation, demand millisecond-scale decision-making to
provide safe and efficient operation. Conventional machine
learning-based CPS already suffer from high inference la-
tency, and the addition of LLMs could further aggravate
real-time response issues. This poses open questions such
as: Are LLMs actually integrated into real-time CPS control
loops possible without causing considerable decision delay?
How are the adaptability and real-time responsiveness to be
balanced in the design of the hybrid architectures (e.g., the
integration of the LLM and the use of light-weight predictive
models)?

Generalization: Furthermore, context generalization and
domain adaptation remain critical issues. CPS environments



are highly heterogeneous, spanning domains such as smart
healthcare, industrial automation, transportation, and cyber-
security. LLMs, trained on general-purpose knowledge, may
not perform well in domain-specific CPS applications with-
out extensive fine-tuning. An open question is: How can
LLMs be effectively adapted to CPS-specific contexts with-
out requiring expensive retraining? Can few-shot or contin-
ual learning approaches help LLMs incrementally adapt to
new CPS environments without catastrophic forgetting?

Data Privacy: Privacy and security concerns are also sig-
nificant. CPS generates sensitive real-time information, in-
cluding industrial control commands, users’ patterns, and
cyber threats. The employment in such applications raises
concerns about revealing the data, adversarial manipulation,
and regulation compliance. Open research questions are:
how to integrate mechanisms preserving the privacy (e.g.,
federated learning, homomorphic encryption) into the em-
ployment in CPS. How can LLM deployments be made re-
silient against adversarial attacks, data poisoning, and other
threats while maintaining robust context awareness.

Interpretability: Human interpretability and decision
transparency are also major issues. Conventional rule-based
techniques offer transparent, interpretable decision traces,
while LLMs are typically black-box models, and tracing and
verifying decisions in safety-critical applications in CPS are
problematic. The issues to consider are questions such as the
following: What are the ways in which explainable AI (XAI)
techniques are to be applied to LLM-based CPS to increase
interpretability? Are justifications from the decisions of the
LLM possible in a manner consistent with the regulation and
operation in CPS?

Safety and Reliability. A major challenge in deploying
LLM-driven interventions is ensuring safety and reliabil-
ity. CPS operate in environments where incorrect interven-
tions can lead to catastrophic failures. Open research ques-
tions to mitigate the concerns regarding reliability and trust-
worthiness that LLM-enabled include: What architectures
enable safe and explainable interventions in safety-critical
CPS? How can assurance mechanisms be designed to gener-
ate human-understandable justifications that increase opera-
tor trust in LLM-generated actions? How can human-in-the-
loop mechanisms, such as RLHF, be incorporated into veri-
fication pipelines while preserving explainability and trace-
ability?

Roadmap: Towards Context-Aware CPS 2.0
The integration of LLMs into CPS opens exciting possibil-
ities for the future. We propose a roadmap toward Context-
Aware CPS 2.0, characterized by: (1) Hybrid Architectures,
(2) Real-Time Edge Processing, and (3) Human-AI Collab-
oration.

Hybrid Architectures. The successful integration of
LLMs into CPS requires hybrid architectures that integrate
multiple AI paradigms. This means potentially combining
LLMs with symbolic AI, reinforcement learning, and real-
time adaptive control to optimize decision-making. Sym-

bolic AI relies on rule-based logic and ontologies. This al-
lows it to provide structured reasoning that complements the
flexible adaptability of LLMs (Russell and Norvig 2020).
Reinforcement learning (RL) on the other hand could allow
CPS systems to learn from interactions and refine decisions
based on human feedback (Sutton and Barto 2018). For ex-
ample, autonomous vehicles can benefit from a hybrid sys-
tem where LLMs generate contextual responses while RL
algorithms optimize real-time navigation based on sensor in-
puts (Kendall et al. 2019). Such hybrid architectures have
the potential to improve trust and interpretability in CPS.
For instance, in smart manufacturing, one can think of an
LLM that interprets operational logs and generate human-
readable explanations for anomalies, while a rule-based sys-
tem would enforce predefined safety constraints. Addition-
ally, neurosymbolic AI–a fusion of neural networks and
symbolic reasoning–have the potential to provide structured
contextual reasoning that enhances the transparency of AI-
driven CPS (Garnelo and Shanahan 2019).

Real-Time Edge Processing. Another requirement for the
successful deployment of LLMs in CPS is real time edge
processing. As discussed in Section , deploying LLMs in
CPS presents challenges related to latency and computa-
tional overhead, particularly in real-time applications such
as industrial automation and autonomous systems. To ad-
dress this, real-time edge processing would allow to lever-
age lightweight LLM variants and model compression tech-
niques such as quantization, pruning, and knowledge distil-
lation (Han et al. 2015). These techniques enable LLMs to
run efficiently on edge devices, ensuring fast response times
while minimizing power consumption. For instance, in IoT-
driven smart grids, edge-based LLMs would analyze local-
ized sensor data and generate adaptive control policies to
optimize energy distribution in real time. In healthcare CPS,
wearable devices with compressed LLM models would pro-
vide personalized health insights without relying on cloud-
based processing, ensuring low-latency feedback for users
(Esteva et al. 2019).

Human-AI Collaboration. Integrating human-AI collab-
oration is crucial to ensure trust, transparency, and effec-
tive decision-making in context-aware CPS 2.0. LLM-driven
CPS can enable natural language interaction, allowing hu-
man operators to query, interpret, and refine AI-generated
recommendations (Amershi et al. 2019). This is particu-
larly valuable in high-stakes environments such as aviation,
autonomous driving, and healthcare, where human over-
sight remains essential. One approach is to incorporate ex-
plainable AI (XAI) techniques, where LLMs provide nat-
ural language justifications for their recommendations. For
example, in cybersecurity CPS, an LLM-enhanced intru-
sion detection system can explain why certain network be-
haviors are flagged as anomalies, improving operator trust
and enabling informed decision-making (Molnar 2020). Fur-
thermore, human-in-the-loop AI mechanisms allow CPS to
continuously learn from human feedback. For instance, in
robot-assisted manufacturing, workers can interact with an
LLM-powered system via voice or text commands to dy-
namically adjust robotic behavior based on real-time needs



(Mosqueira-Rey et al. 2023; Wu et al. 2022).

Conclusion
Large Language Models present a paradigm shift in con-
text awareness for cyber-physical systems, moving beyond
rigid rule-based approaches toward adaptive, multimodal,
and human-centric decision-making. While challenges exist
in real-time performance, bias mitigation, and energy effi-
ciency, continued research into LLM-CPS integration could
unlock unprecedented levels of intelligence and adaptabil-
ity in next-generation systems. We advocate for interdisci-
plinary research collaborations to address these challenges
and pave the way for LLM-powered CPS architectures that
redefine context-aware autonomy.
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