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Abstract  
Heart failure is a common, incurable illness with high mor-
bidity and mortality rates globally. Early detection enables 
proper medication and monitoring, significantly affecting 
survival rates especially in the present healthcare environ-
ment driven by the covid-19 pandemic. Machine learning 
techniques offer a powerful tool for predicting heart failure 
survival by uncovering hidden data patterns.  
This paper aims to predict heart failure patient survival using 
machine learning, focusing on identifying significant features 
through techniques like Recursive feature elimination, Ran-
dom Forest and Information Gain. The machine learning 
model used is an ensemble method, a stacked classifier with 
CatBoost, LightGBM and XGBoost as base models and Mul-
tilayer Perceptron as the meta-learner. The best-performing 
models were selected from a list of trained models, including 
Logistic Regression, Random Forest, Support Vector Ma-
chine, LightGBM, CatBoost, XGBoost, and Multilayer Per-
ceptron. The heart failure patient survival dataset utilized in 
this research is artificially created through Gretel AI, a syn-
thetic data generation platform, based on a primary UCI med-
ical dataset (Heart Failure Clinical Records, UCI). This 
method ensures data confidentiality while preserving essen-
tial statistical characteristics. This study contributes to re-
search on predicting heart failure survival by emphasizing 
early intervention and demonstrating the potential of machine 
learning in improving patient outcomes.  

 Introduction    
Heart failure (HF) is a chronic condition where the heart 
fails to pump blood efficiently, leading to symptoms such as 
shortness of breath, fatigue, and swelling in the limbs and 
abdomen (NHLBI 2022). It is a progressive syndrome re-
sulting from structural or functional cardiac abnormalities 
impairing the heart’s ability to circulate blood adequately 
(Masetic and Subaşï 2016). Though HF itself is not classi-
fied as a disease, it significantly contributes to life-threaten-
ing cardiovascular conditions such as coronary artery dis-
ease, cardiomyopathy, and myocarditis (Quinn 2006). Over 
64 million people globally suffer from HF, with its preva-
lence expected to increase by 46% between 2012 and 2030 
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(Virani et al. 2021; Kapelios et al. 2023). The rising burden 
of HF necessitates proactive healthcare strategies to reduce 
its social and financial impact (Kapelios et al. 2023; Sava-
rese et al. 2022). 
The European Society of Cardiology (ESC) 2016 guidelines 
define HF as a clinical syndrome characterized by breath-
lessness, ankle swelling, and fatigue, caused by cardiac ab-
normalities leading to reduced cardiac output and/or ele-
vated intracardiac pressures at rest or during stress (Hu et al. 
2022). However, the 2021 universal definition expands this 
by incorporating elevated natriuretic peptide levels or objec-
tive evidence of systemic congestion as diagnostic criteria 
(Hu et al. 2022). Heart failure is further classified into two 
main types based on ejection fraction: 
• Heart Failure with Reduced Ejection Fraction (HFrEF): 

Left ventricular ejection fraction (LVEF)≤ 40%, com-
monly associated with impaired systolic function due to 
myocardial infarction or dilated cardiomyopathy. 

• Heart Failure with Preserved Ejection Fraction (HFpEF): 
LVEF ≥ 50%, where the heart contracts normally but 
struggles to relax and fill properly, often linked to hyper-
tension and diabetes (Inamdar and Inamdar 2016; Poni-
kowski et al. 2016). 

• A third category, Heart Failure with Mid-Range Ejection 
Fraction (HFmrEF) (LVEF 41-49%), represents an inter-
mediate state (Ponikowski et al. 2016). The New York 
Heart Association (NYHA) classification and ACC/AHA 
staging system are also widely used to assess HF severity 
based on symptoms and disease progression. 

These classifications guide treatment strategies, where 
HFrEF is managed with beta-blockers and ACE inhibitors, 
while HFpEF treatment focuses on symptom management 
(Siriwardena and Fan 2018). 
Traditional diagnostic methods for HF rely on clinical 
symptoms, echocardiography, biomarkers (BNP, NT-
proBNP), and exercise capacity assessment (Ponikowski et 
al. 2016). However, these approaches often fail to provide 
early detection, leading to delayed interventions and poor 

 



patient outcomes. Moreover, ethnic disparities affect HF 
prognosis, as seen in Bangladeshi and Pakistani populations, 
where genetic differences impact response to treatment 
(NIHR 2023). The dataset used in this study focuses on the 
Pakistani population, where 200,000 new cases of coronary 
heart disease are reported annually (Moreno-Sanchez 2023). 
The long-term effects of COVID-19 have further exacer-
bated cardiovascular complications, with studies showing a 
higher incidence of HF among recovered individuals (Zuin 
et al. 2022). Preventive healthcare measures such as vac-
cination may play a role in reducing these risks. 
With advancements in medical imaging, biomarkers, and 
wearable technology, machine learning (ML) has emerged 
as a crucial tool for predicting HF outcomes. Traditional risk 
scores such as the Seattle Heart Failure Model (SHFM) and 
Heart Failure Survival Score (HFSS) integrate clinical and 
imaging parameters to assess survival probabilities (Pocock 
et al. 2012). However, ML models can analyze complex da-
tasets, extract hidden patterns, and provide personalized risk 
predictions. This paper explores various ML techniques, in-
cluding Logistic Regression, Random Forest, Support Vec-
tor Machine (SVM), LightGBM, CatBoost, and XGBoost, 
alongside an ensemble learning approach to enhance HF 
survival prediction. The study also integrates feature selec-
tion techniques such as Recursive Feature Elimination 
(RFE), Random Forest, and Information Gain to improve 
model interpretability and accuracy. 
The evolution of HF diagnosis has been shaped by medical 
advancements. Early approaches relied on clinical charac-
teristics and echocardiography, while later innovations in-
troduced biomarkers (BNP, NT-proBNP), exercise capacity 
assessment, and risk scores for survival prediction (Poni-
kowski et al. 2016; Hunt et al. 2009; Lang et al. 2015). The 
discovery of X-rays, electrocardiography (ECG), and echo-
cardiography revolutionized HF assessment, while modern 
AI-driven techniques enable real-time prognosis (Ribatti 
2009; Davis, Hobbs, and Lip 2000; Hajar 2019). This re-
search aims to bridge existing gaps in HF survival studies, 
such as the need for diverse datasets, robust model perfor-
mance, and deeper understanding of feature relationships. 
The findings aim to enhance predictive analytics for HF sur-
vival and improve healthcare decision-making in resource-
limited settings. 

Related work 
Heart failure is a progressive condition with varying symp-
toms, development rates, and causes, making survival pre-
diction complex (Sabbah 2016). Even in clinically stable pa-
tients, the silent nature of HFrEF can increase mortality risk 
due to underdiagnosis or inadequate treatment. Addition-
ally, patient-specific factors such as age, gender, genetics, 
lifestyle, and socioeconomic status contribute to prognosis 

variability, complicating survival predictions (Sciomer et al. 
2020). Comorbidities such as diabetes, hypertension, and 
chronic kidney disease further complicate patient outcomes 
and treatment plans, adding to the heterogeneity of HF cases 
(Zheng et al. 2021). These challenges highlight the need for 
advanced predictive models capable of handling multi-fac-
eted patient data. 
Machine learning has revolutionized medical diagnosis by 
discovering hidden patterns in complex datasets, enabling 
personalized risk prediction, early diagnosis, and improved 
patient outcomes (Bourazana et al. 2024). Supervised learn-
ing techniques such as Support Vector Machines (SVM), 
Decision Trees (DT), Random Forest (RF), and XGBoost 
have been extensively studied for HF survival prediction. A 
study employing SVM with a Gaussian kernel on a dataset 
of 299 patients achieved an accuracy of 85.71%, outper-
forming Decision Trees (78.67%), Random Forest 
(82.67%), and K-Nearest Neighbours (76%) (Sang et al. 
2020). However, the study did not employ feature selection 
or data balancing techniques, which could have enhanced 
the model's performance and generalizability. Another study 
utilized synthetic minority oversampling technique 
(SMOTE) and Random Forest for feature ranking, identify-
ing Ejection Fraction, Serum Creatinine, and Age as the 
most influential features. Using Extra Trees Classifier, the 
model achieved 92.6% accuracy, outperforming Logistic 
Regression (84.2%), Decision Tree (87.7%), and XGBoost 
(85.33%) (Ishaq et al. 2021). However, this study did not 
explore ensemble or neural network approaches, potentially 
limiting the exploration of complex relationships between 
features. 
Few studies have explored unsupervised learning for HF 
survival prediction. A notable work applied K-Means clus-
tering to segment HF patients into groups, followed by SVM 
training on these clusters. By optimizing hyperparameters 
through grid search, the model achieved an accuracy of 
93.33% when using six clusters (Saravanan and Swamina-
than 2021). The study demonstrated that clustering before 
classification could improve prediction performance by re-
ducing intra-class variability but however, this approach re-
quires careful cluster validation and interpretability checks 
before clinical application. 
Ensemble learning methods combine multiple models to en-
hance prediction accuracy. A study introduced Balanced 
Random Forest (BRF) to tackle class imbalance, yielding an 
accuracy of 76.25%, outperforming SVM (68.89%) and 
KNN (66.89%) (Newaz et al. 2021). Another comparative 
study found that LightGBM outperformed traditional classi-
fiers, achieving 85% accuracy, while XGBoost scored 84% 
(Mamun et al. 2022). Additionally, an experiment using 
XGBoost with feature permutation and hyperparameter tun-
ing recorded an accuracy of 90% highlighting that advanced 
feature selection and tuning can significantly enhance model 
performance. (Kaushik and Birok 2021). 



Neural networks (ANNs), particularly Multi-Layer Percep-
trons (MLP), have demonstrated strong predictive capabili-
ties in HF analysis. In a heart disease detection study, MLP 
trained with Particle Swarm Optimization (PSO) outper-
formed other models, achieving an accuracy of 84.61% (Ba-
taineh and Manacek 2022). Although deep learning methods 
capture intricate data relationships, they require larger da-
tasets, extensive tuning, and higher computational resources 
for optimal performance (Sarra, Dinar, and Mohammed 
2022). 
One major limitation in HF survival prediction is reliance 
on small datasets (299 records), leading to potential biases 
and overfitting (Ahmad et al. 2017). Many studies handled 
class imbalance using SMOTE, suggesting it as the pre-
ferred resampling method (Joloudari et al. 2023). However, 
the use of unsupervised learning and neural networks re-
mains underexplored, likely due to dataset constraints and 
clinical preference for interpretable models (Tufail et al. 
2023). A summary of these recent studies and their reported 
model accuracies is provided in Table 1. 
 

Previous 
Studies 

Dataset 
Records 

ML Models Used 
Highest 

Accuracy 
(%) 

Chicco and 
Jurman 
 (2020) 

299 

LR, RF, One Rule, DT, 
ANN, SVM radial, SVM 
linear, Gradient Boosting, 
K-NN, Naïve Bayes. 

74  
(RF) 

Sang et al. 
2020) 

299 
SVM, K-NN, DT, RF, 
XGBoost 

85.71 
 (SVM) 

Ishaq et al. 
(2021) 

299 
DT, AdaBoost, GBM, RF, 
Extra Trees, LR, Gaussian 
Naïve Bayes, SVM 

92.6  
 (Extra 
Trees) 

Saravanan 
and 
Swamina-
than (2021) 

299 SVM, K-Means 
93.33  

(SVM) 

Newaz et 
al. (2021) 

299 BRF, SVM, K-NN, RF 
76.25  

(BRF) 

Kaushik 
and Birok 
(2021) 

299 
XGBoost, KNN, DT, RF, 
Naïve Bayes, etc. 

90 
 (XGBoost) 

Mamun et 
al. (2022) 

299 
LightGBM, SVM, DT, LR, 
Bagging, XGBoost 

85 
(LightGBM) 

Bataineh 
and 
Manacek 
(2022) 

303 
MLP-PSO, LR, SVM, DT,  
RF, K-NN 

84.61 
(MLP-PSO) 

Previous 
Studies 

Dataset 
Records 

ML Models Used 
Highest 

Accuracy 
(%) 

Li et al. 
(2022) 

4540 

DT, SVM, Naïve Bayes, 
MLP, KNN, XGBoost, 
AdaBoost, LightGBM, LR, 
CatBoost and Bagging. 

AUC: 0.833 
(CatBoost) 

 
Table 1: Comparison of ML Models in Previous Studies 

 
This research builds upon previous work by integrating en-
semble learning and feature selection techniques to improve 
HF survival prediction while addressing the challenges 
posed by small datasets and class imbalance. 

Methodology 
Phases of Implementation. The methodology of this study 
is organized into structured phases, each addressing critical 
steps in the prediction modelling process. The phases as 
shown in Figure 1 include dataset generation, preprocessing, 
exploratory data analysis (EDA), feature selection, model 
training, and model evaluation, clearly defining these phases 
facilitates reproducibility and clarity of the research process. 
 

 
    Figure 1: Phases of Implementation 

 
Synthetic Dataset Generation. This study explored two 
synthetic data generation platforms, Mostly AI and Gretel 
AI, to create a synthetic dataset based on the UCI Heart Fail-
ure Clinical Records dataset (Ahmad et al. 2017). The orig-
inal UCI dataset contains 299 patient records collected from 
the Institute of Cardiology and Allied Hospital in Faisala-
bad, Pakistan. However, this dataset was not directly used in 
the study; instead, it served as a reference for generating a 
synthetic dataset that maintained similar statistical proper-
ties.  



Mostly AI generated a synthetic dataset with a 78.4% simi-
larity accuracy to the original dataset, while Gretel AI, using 
its Navigator fine-tuning model, produced a synthetic da-
taset with a higher similarity accuracy of 91%. Due to this 
higher similarity, Gretel AI was selected to generate the syn-
thetic dataset for this study. After multiple iterations and en-
suring that no duplicate rows were retained, the final dataset 
comprised 1,072 records with 13 features, effectively repli-
cating the structure and distribution of the original dataset 
without using any real patient data. However, it is essential 
to acknowledge that synthetic data, despite high statistical 
similarity, may not fully capture nuanced clinical variations 
present in real-world scenarios. 
Dataset Preprocessing. Preprocessing involved handling 
missing values, normalizing features, and detecting outliers 
using statistical methods. These steps ensured data quality 
and suitability for modelling. Exploratory data analysis 
(EDA) was conducted to understand data distributions, iden-
tify outliers, and visualize feature relationships using tech-
niques such as histograms, boxplots, scatter plots, stacked 
bar plots, pie charts, and correlation heatmaps. Visualiza-
tions such as correlation heatmaps provide valuable insights 
into feature interactions and inform subsequent feature se-
lection. Table 2 provides an overview of the synthetic da-
taset, detailing the description and characteristics of each 
feature included in the study. 

 

Features Description Outcomes 

Age Age of the patient Range: 40 – 95 
(Years) 

Anaemia   Deficiency of haemoglo-
bin or red blood cells in 
the blood.   

0= Absence   
1= Presence   

Creatinine Phos-
phokinase   

Level of Creatinine 
Phosphokinase (CPK) 
enzyme in the blood.    

Range: 30 - 
7702 (mcg/L)   

Diabetes   Elevated levels of blood 
sugar in the body   

0= Absence   
1= Presence   

Ejection Fraction   Percentage of blood leav-
ing the heart each time it 
squeezes.   

Range: 14-80   

High Blood Pres-
sure   

when pressure in blood 
vessels is too high.   

0= Absence   
1= Presence 

Platelets   Small blood cells that 
help with clotting to stop 
bleeding.    

Range: 25.1 – 
850 (kiloplate-
lets /ML)   

Serum Creatinine   Level of creatinine in 
blood.   

Range: 0.6 – 
9.0 (mg/dL)   

Features Description Outcomes 

Serum Sodium   Level of sodium in 
blood.   

Range: 125 - 
148 (mEq/L)   

Sex   Patient’s gender.   0= Female   
1= Male   

Smoking   Patient’s smoking habit.   0= Non-
Smoker   
1= Smoker   

Time   Follow-up period.   Range: 4- 285 
(Days)   

Death Event  

(Target)   

Occurrence of death dur-
ing follow-up period.   

0= Survived   
1= Deceased   

 
Table 2 : Synthetic Dataset Description 

 
Exploratory Data Analysis (EDA). EDA techniques re-
vealed important data distributions and relationships among 
features. The correlation heatmap, for instance, highlighted 
the relationship between different features and identified 
strong negative correlation between DEATH_EVENT and 
Time , as shown in Figure 2. Recognizing correlations is 
crucial, as highly correlated features could lead to redun-
dancy and impact model interpretability. 

 

 
Figure 2: Synthetic Dataset Heatmap 

 
Feature Engineering. During data preprocessing, outliers 
were identified in several features. To address this, capping 
at 0.05 and 0.95 percentiles was used, as it outperformed 
more extreme thresholds.  StandardScaler was then used to 
normalize features, ensuring consistent scaling across bi-



nary and continuous variables. These steps were done sepa-
rately for training and testing sets to avoid data leakage. Alt-
hough SMOTE was considered here, it was applied only af-
ter feature selection to prevent biasing feature importance. 
This ensured transparent and unbiased methodology, with 
further details in the Model Training section. 
 
Feature Selection. Feature selection techniques were em-
ployed to enhance model performance and interpretability. 
Recursive Feature Elimination (RFE) identified the optimal 
number of features through cross-validation, as illustrated in 
Figure 3, which determined that four features provided the 
best performance balance. This method systematically re-
moved less significant features to improve the model’s pre-
dictive accuracy while reducing complexity. Random Forest  
and Information Gain techniques also validated these re-
sults, collectively identifying Age, Ejection Fraction, Serum 
Creatinine, and Time as the most influential features. Ran-
dom Forest assigned importance scores based on how much 
each feature contributed to reducing impurity in decision 
trees, while Information Gain quantified the relevance of in-
dividual attributes in classification performance. The se-
lected features demonstrated clinical significance, aligning 
with medical studies indicating that ejection fraction and se-
rum creatinine levels are strong indicators of heart failure 
progression. Additionally, time (follow-up period) played a 
crucial role, highlighting the impact of monitoring duration 
on survival outcomes. To ensure robustness, different fea-
ture selection thresholds were tested, including retaining six 
or three features, but the best performance was consistently 
achieved with four features, as identified by RFE and Ran-
dom Forest.  

 

 
Figure 3: Optimal Number of Features Graph 

 
Addressing Data Imbalance. Before training the machine 
learning models, SMOTE was applied to address class im-
balance in the dataset. Since the original dataset had an im-
balanced distribution of survival outcomes, applying 

SMOTE ensured a balanced class representation. This pre-
vented models from being biased toward the majority class, 
improving recall and F1-score for minority class predic-
tions. The impact of SMOTE is illustrated in Figure 4, show-
ing the class distribution before and after resampling. 

 

                            
Figure 4: Target Feature Pie Charts Before and After 

SMOTE 
 

Model Training. Several machine learning models were 
implemented, including Logistic Regression, Random For-
est, Support Vector Machine (SVM), LightGBM, CatBoost, 
XGBoost, and Multilayer Perceptron (MLP). The models 
were trained and evaluated under three distinct testing sce-
narios: 
• Test 1: All models were trained and evaluated without fea-

ture selection, using all 12 features. 
• Test 2: Models were trained and evaluated using only the 

selected features identified from the feature selection pro-
cess. 

• Test 3: Based on the results from Test 1, the top-perform-
ing models—CatBoost, LightGBM, and XGBoost—were 
chosen as base models, with MLP as the meta-learner to 
develop a stacked ensemble model. 

Despite minor accuracy reductions in Test 2, feature selec-
tion was retained due to its advantages in interpretability, 
reduced computational complexity, and mitigation of over-
fitting risks. The comparative analysis of model accuracies 
across these tests is presented in Table 3 in the Results and 
Discussion section, highlighting the impact of feature selec-
tion on model performance. 
Model Evaluation Metrics. Model performance was eval-
uated using multiple metrics, including Accuracy, Precision, 
Recall, F1-Score, Confusion Matrix, and Receiver-Operat-
ing Characteristic Curve (ROC) & Area Under Curve Score 
(AUC). These evaluations verified the ensemble model’s ro-
bustness and its predictive accuracy. Also, utilizing multiple 
evaluation metrics ensures a comprehensive assessment of 
model performance, essential for critical clinical decision-
making scenarios.  
 



Results and Discussions 
The synthetic dataset, comprising 1,072 records with 13 fea-
tures, underwent comprehensive exploratory data analysis 
(EDA). The histograms and boxplots identified skewness 
and outliers primarily in features such as Age, Creatinine 
Phosphokinase, Serum Creatinine, and Platelets. Correlation 
analysis revealed that the feature Time had a strong negative 
correlation (-0.55) with the target feature   
(DEATH_EVENT), emphasizing the importance of follow-
up duration in patient outcomes. Identifying such strong cor-
relations aids in model interpretability and clinical decision-
making. 
Feature selection significantly refined model training by 
identifying the most impactful features: Age, Ejection Frac-
tion, Serum Creatinine, and Time. These features consist-
ently appeared as the top predictors across Recursive Fea-
ture Elimination (RFE), Random Forest, and Information 
Gain methods, thus justifying their retention despite slight 
accuracy reductions in certain models during initial testing. 
This selection aligns well with clinical evidence highlight-
ing these factors as critical predictors of HF survival. The 
machine learning models were trained across three tests, as 
shown in Table 3, which presents the accuracies obtained 
for each model under different conditions. 

 

ML 
Model   

Without feature 
selection (%)   

With feature  
 selection (%)   

LR 87   87   

RF 93   90   

SVM 87   88   

XGBoost 93   93   

MLP 91   90   

Extra Trees 93   92   

CatBoost 94   94   

LightGBM 94 91   
 

Table 3: Accuracies of ML Models Across Tests 
 

• Test 1 (without feature selection): Models exhibited high 
accuracies, with CatBoost and LightGBM achieving the 
highest (94%), followed closely by Random Forest, 
XGBoost, and Extra Trees (93%). Simpler models, such 
Logistic Regression and SVM, displayed lower accuracy 
(87%) due to their limited ability to capture complex, 
non-linear relationships. 

•  Test 2 (with feature selection): Despite minor accuracy 
reductions (e.g., Random Forest from 93% to 90%, 
LightGBM from 94% to 91%), feature selection was re-
tained for interpretability, reduced computational com-

plexity, and mitigation of overfitting. CatBoost main-
tained consistent performance (94%), underscoring its 
robustness with fewer features. 

• Test 3 (stacked ensemble model): Based on Test 1 results, 
CatBoost, LightGBM, and XGBoost were selected as 
base models, with Multilayer Perceptron (MLP) chosen 
as the meta-learner due to its strong performance (91%) 
and capability to capture complex patterns distinct from 
tree-based models. After hyperparameter optimization 
using RandomizedSearchCV and cross-validation, the 
ensemble achieved a high accuracy of 95%.  

The final ensemble demonstrated a precision of 98% and re-
call of 95%, achieving an impressive balance (F1-score of 
96%).  
The ROC curve, as illustrated in Figure 5, yielded an AUC 
of 98%, further confirming the model’s robustness and 
strong discrimination ability between survival and non-sur-
vival cases. High AUC values emphasize the model's relia-
bility in differentiating patient outcomes across various de-
cision thresholds.  
 

 
Figure 5: ROC Curve 

 
The confusion matrix, depicted in Figure 6, indicated 148 
true positives and 56 true negatives, demonstrating the mod-
el's high capability in correctly classifying both deceased 
and survived patients. Minimal misclassifications were ob-
served, with 8 false positives and 3 false negatives, suggest-
ing a low rate of incorrect survival or mortality predictions. 
This low misclassification rate is particularly important in 
medical applications, where false negatives (incorrectly pre-
dicting survival for a patient at risk) could lead to inadequate 
clinical intervention. Furthermore, the high precision (98%) 
and recall (95%) values reinforce the model’s ability to cor-
rectly identify patients at risk while minimizing unnecessary 
false alarms. The model’s strong performance metrics sug-
gest that it could serve as an effective decision-support tool 



For early intervention, helping healthcare providers priori-
tize high-risk patients for closer monitoring and timely treat-
ment. 

 
 
 

 
 
            

 
 
 
 
 
 
 

 
Figure 6: Confusion Matrix 

 
Limitations and Future works. Despite its high accuracy, 
this study has limitations. The synthetic dataset, though 
achieved a high similarity (91%) to the original UCI dataset, 
may still lack fine-grained clinical details, making real-
world application challenging. Its focus on binary and con-
tinuous features limits the inclusion of complex medical at-
tributes like treatment history or lifestyle factors. Although 
SMOTE helped address class imbalance, synthetic over-
sampling can introduce biases that alter the dataset’s distri-
bution. The ensemble model achieved 95% accuracy, but the 
lack of interpretability in deep learning-based meta-learners 
makes clinical deployment difficult. To enhance this re-
search, future work can explore alternative synthetic data 
generation methods to improve realism and reduce potential 
biases introduced by current generation techniques. Incor-
porating real-world clinical data, such as COVID-19 patient 
histories and longitudinal health records, could improve 
model adaptability to evolving medical conditions. Further 
refinement in feature selection techniques, particularly 
methods that capture interaction effects and non-linear de-
pendencies, may enhance predictive power while maintain-
ing efficiency. Lastly, improving the interpretability of the 
ensemble model by integrating Explainable AI (XAI) tech-
niques would ensure that clinical practitioners can better un-
derstand and trust the model’s predictions, facilitating 
smoother real-world implementation. 

Conclusion 
This study investigated heart failure survival prediction us-
ing various machine learning models and an ensemble ap-
proach. The final stacked ensemble model achieved an ac-
curacy of 95% and an AUC of 98%, significantly outper-
forming individual models. The use of synthetic data proved 

effective in overcoming data scarcity, enabling robust pre-
dictive modeling. This research highlights the potential of 
machine learning in healthcare, providing valuable tools for 
early identification and improved management of high-risk 
heart failure patients. 
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