
GenAI-Driven Image Generation Pipeline for Sustainable Garment Design and
Waste Reduction in Fashion Production

Ilham Ghori 1, Kayvan Karim 1, Dima Alkawadri 1

1 Heriot-Watt University
ilhamghori@hotmail.com, K.Karim@hw.ac.uk, D.Alkawadri@hw.ac.uk

Abstract

The fashion industry’s linear production model generates sig-
nificant pre-consumer textile waste, especially during pat-
tern cutting. In response to the environmental impact of fash-
ion consumption, strategies such as reuse, recycling, and re-
fashioning aim to divert textiles from landfills and promote
sustainable practices. However, challenges in the textile sec-
tor—such as raw material variability and complex manufac-
turing—require more targeted solutions. Recent studies have
identified Artificial Intelligence (AI) as a promising tool to
enhance sustainability, streamline production, and enable per-
sonalised design. One such advancement is Generative AI
(GenAI), which supports applications like virtual try-ons,
fabric-to-garment transformations, and multimodal garment
design via tools such as FashionGAN, StyleGAN, and Latent
Diffusion Models. Despite these developments, current image
generation methods struggle with preserving fabric detail and
structural accuracy. This research proposes an image gener-
ation pipeline that accurately reflects specific fabric textures
and visual attributes, offering designers greater creative con-
trol while reducing the need for physical samples—thereby
minimising process waste. The system is implemented us-
ing ComfyUI and LoRA-enhanced Stable Diffusion 1.5 mod-
els to overcome limitations found in existing methods. To
evaluate performance, quantitative metrics such as FID, KID,
SSIM, LPIPS, and CLIP-S were used to assess visual qual-
ity, structural similarity, and semantic alignment. A qualita-
tive comparison was also conducted to evaluate fabric texture
preservation and prompt consistency across models. Among
the tested models, Realistic Vision v5.1 delivered the best re-
sults across most metrics and is recommended for photore-
alistic applications in sustainable fashion. DreamShaper v8
excelled in preserving fabric texture, while MajicMix v5 pro-
duced stylised outputs more suitable for conceptual design
stages. This study aims to empower fashion designers with a
flexible and sustainable design model, to reduce waste, accel-
erate prototyping, and explore AI-driven innovation in digital
fashion.

Introduction
The garment manufacturing industry has significant environ-
mental impacts, including resource depletion, pollution, and
waste generation (Ragab et al. 2024). This impact neces-
sitates sustainable practices. Studies showed that adopting
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green practices in garment manufacturing is vital for envi-
ronmental sustainability and economic performance. Prin-
ciples like Lean production, including 5S, Value Stream
Mapping, and Single Minute Exchange of Die, have been
shown to improve environmental performance by identify-
ing and eliminating waste in production processes (Marud-
hamuthu and Krishnaswamy 2011). These practices not only
enhance productivity and quality but also lead to reduced
emissions and pollution prevention (Marudhamuthu and Kr-
ishnaswamy 2011). However, Lean manufacturing imple-
mentation in the garment industry addresses challenges,
such as high labor costs, short delivery times, and frequent
style changes (Kumari, Quazi, and Kumar 2015). Addition-
ally, the garment industry faces challenges in adopting these
practices due to unpredictable demand fluctuations and com-
plex manufacturing environments (Abd Jelil 2018).

One approach is to use the advancements in artificial in-
telligence (AI) in fashion production. These advancements
have brought transformative changes across fields like art,
design, and fashion (Singh and Patras 2024). Within the
fashion industry, image generation models have the potential
to revolutionize design workflows and streamline prototyp-
ing processes, offering new ways to automate and enhance
creativity (Wang et al. 2024). Fashion image synthesis, in
particular, enables designers to generate realistic garment
images from textual descriptions or visual inputs, allow-
ing them to explore design concepts without needing phys-
ical samples (Goodfellow et al. 2020; Ho, Jain, and Abbeel
2020).

Despite these capabilities, existing models face notable
limitations. Many struggle to maintain complex patterns,
such as stripes and text, and fall short in capturing nuanced
fabric textures and material qualities—essential aspects for
realistic fashion applications (Wang et al. 2024; Sun et al.
2023). Current methods offer control over basic elements
like color but lack the ability to handle detailed textures and
materials, which are challenging to accurately describe and
model (Zhang, Zhang, and Xie 2024).

Background
The field of image generation has evolved through a va-
riety of model architectures, each contributing uniquely
to visual synthesis. Early models like Variational Autoen-
coders (VAEs) introduced probabilistic latent spaces to gen-



erate diverse, though often blurry, outputs (Kingma 2013).
Generative Adversarial Networks (GANs) gained popular-
ity for producing sharper, realistic images through adversar-
ial training between generator and discriminator networks,
but they suffer from training instability and mode collapse
(Goodfellow et al. 2020). Convolutional Neural Networks
(CNNs), while not generative by design, have been founda-
tional in extracting visual features for downstream genera-
tive tasks, aiding in structure, texture, and content preserva-
tion (Rawat and Wang 2017). These models laid the ground-
work for more recent approaches in high-fidelity and con-
trolled image synthesis.

Figure 1: An overview of the generative model process,
demonstrating how it takes an input dataset and creates
”fake” images that closely mimic the original data (Luce
2018).

Diffusion Models Diffusion models, introduced by (Sohl-
Dickstein et al. 2015), are a type of probabilistic genera-
tive model that uses a parameterized Markov chain to cre-
ate samples resembling the original data. It learns to reverse
a noise-adding diffusion process, where noise is gradually
introduced to the data in small increments until the orig-
inal signal becomes unrecognizable. By setting the transi-
tions in this sampling process to conditional Gaussian dis-
tributions, the model enables a straightforward neural net-
work configuration for effective data generation (Ho, Jain,
and Abbeel 2020). This approach has been shown to gen-
erate high-quality samples and has applications in various
fields, including image synthesis (Singh and Patras 2024).

One of the main advantages of diffusion models is their
ability to produce high-quality images with broad distribu-
tion coverage, which reduces the risk of mode collapse—a
common problem in other generative models like GANs.
Diffusion models also benefit from a stationary training ob-
jective, making them more stable and easier to scale com-
pared to GANs (Dhariwal and Nichol 2021). However, a
notable disadvantage is their slower sampling time, as they
require multiple denoising steps, each involving forward
passes through the network. This can result in diffusion
models being 5-20 times slower than GANs in generating
images, especially as diffusion models tend to have larger
architectures (Dhariwal and Nichol 2021).

Applications: Diffusion models have been used in high-
quality image generation, video synthesis, and generating
medical images, where precise detail is critical.

Fashion-Specific Image Generation Models
In fashion image synthesis, generative models like Fash-
ionGAN and StyleGAN have been instrumental in tasks
such as fabric-to-garment transformation, virtual try-on, and
texture-aware garment generation. These models demon-
strate how visual and conditional inputs can guide structured
image generation and inform the design of pipelines in this
research.

FashionGAN FashionGAN was introduced to simplify
garment visualization by generating images that combine
fabric textures with fashion sketches (Cui et al. 2018). Built
on a conditional GAN framework, the model encodes fab-
ric textures into latent representations, which are then com-
bined with sketches to synthesize complete garment visuals.
A novel loss function enhances regular pattern generation,
making the model useful for structured design outputs.

However, FashionGAN faces challenges in preserving ir-
regular or complex patterns, and its reliance on sketches lim-
its flexibility when working with real fabric inputs. Despite
these constraints, the model remains relevant for exploring
texture control and guided garment synthesis.

StyleGAN StyleGAN is a high-resolution image synthesis
model capable of fine-grained control over garment features
like texture, pose, and style through latent space manipula-
tion (Karras et al. 2020). It introduces a mapping network to
transform input noise vectors into intermediate latent codes,
allowing control at different synthesis stages using adaptive
instance normalization (AdaIN).

This capability enables consistent style and texture ma-
nipulation, which is particularly useful in fashion applica-
tions. While StyleGAN can produce highly realistic results,
training and customization remain computationally inten-
sive, and visual artifacts such as distortions may affect out-
put fidelity (Choi, Park, and Park 2022). Nonetheless, its
structured latent manipulation makes it valuable in building
guided generation pipelines.

Multimodal Approaches in Image Synthesis
The integration of multimodal inputs, such as text and im-
ages, has become a key advancement in generative model-
ing, especially in creating detailed and customized outputs.
The following approaches allow models to better align gen-
erated images with specific user intentions, such as generat-
ing garments from both descriptive and visual cues, enhanc-
ing creative control and application versatility:
CLIP (Contrastive Language–Image Pre-training): De-
veloped by OpenAI, CLIP learns visual concepts from nat-
ural language descriptions by pretraining on diverse image-
text pairs (Radford et al. 2021). It encodes images and texts
into a shared latent space, enabling alignment between vi-
sual content and language (Radford et al. 2021). In fash-
ion image generation, CLIP can be paired with generative
models to control image outputs based on text prompts.
For example, in fashion-specific applications, CLIP can help
ensure that generated garment features match specified at-
tributes like color, style, or pattern (Baldrati et al. 2023;
Singh and Patras 2024).



ControlNet: ControlNet is an extension of diffusion mod-
els that enhances control over generated images by integrat-
ing conditional inputs, such as sketches, poses, or segmen-
tation maps, into the image synthesis process (Zhang, Rao,
and Agrawala 2023). In fashion image generation, it allows
models to fine-tune specific visual elements while maintain-
ing flexibility in the overall composition. This approach is
used in models like FashionSD-X, where ControlNet’s con-
ditional layers enable designers to visualize garment designs
based on both text descriptions and garment outlines, allow-
ing for precise control over garment structure and style.

Related Work
Research in fabric-to-garment generation has produced sev-
eral notable models that leverage both deep learning and
generative techniques to aid the fashion industry. These stud-
ies underscore the advancements made in generating high-
quality garment images while highlighting ongoing chal-
lenges in maintaining fabric realism, structural integrity, and
user control over design outputs.
SGDiff One significant advancement in the field is SGDiff,
a style-guided diffusion model that incorporates both tex-
tual and visual inputs for garment generation. By allowing
text-based descriptions of style and fabric images to guide
the output, SGDiff provides designers with enhanced cre-
ative control (Sun et al. 2023). A notable achievement of
SGDiff is its dual-modality input capability, which allows
for a richer depiction of aesthetic and material properties in
garment images. However, the model struggles to represent
intricate fabric textures, especially with complex materials.
This limitation arises due to SGDiff’s focus on style guid-
ance rather than material-specific features, which often re-
sults in less realistic textures in complex fabrics (Sun et al.
2023).
DiffFashion The DiffFashion model addresses structural
preservation in garment generation. Unlike SGDiff, which
emphasizes style control, DiffFashion combines a garment’s
source image with a reference texture or pattern to produce
new designs that maintain the original garment structure
(Cao et al. 2023). This model’s strength lies in its ability
to retain the garment’s shape, making it suitable for designs
where structure is crucial. However, DiffFashion’s limitation
lies in its visual coherence; when reference textures differ
significantly from the original material, the final output may
appear unnatural, thus limiting its effectiveness in realistic
fabric-to-garment synthesis (Cao et al. 2023).
FashionSD-X FashionSD-X expands on multimodal syn-
thesis by incorporating sketches, text prompts, and tex-
tures to condition garment generation in a structured
way. Through a pipeline combining Low-Rank Adaptation
(LoRA) and ControlNet, it synthesizes garments that reflect
both visual structure from sketches and thematic cues from
text inputs, supporting creative control for fashion designers
(Singh and Patras 2024). Although promising, FashionSD-
X’s reliance on multimodal inputs increases the complexity
of training and demands careful calibration to balance each
modality’s influence on the final output.
StableGarment StableGarment applies a garment-centric
approach using stable diffusion with a dedicated garment

Purpose Packages/Tools
Image Generation
Pipeline

ComfyUI, Diffusers, ComfyUI-
Manager, LoRA

Model Weights Stable Diffusion v1.5,
DreamShaper v8, RealisticVision
v5.1, MajicMix v5

Data Handling os, glob, shutil, Google Drive API
Image Processing PIL, cv2, torchvision.transforms
Evaluation Metrics torchmetrics, lpips, skimage, clip,

numpy
Environment Google Colab, NVIDIA A100

GPU

Table 1: Key Libraries and Tools Used

encoder and ControlNet to maintain intricate textures while
performing try-on tasks. This framework allows flexible
generation of fashion images by maintaining garment tex-
tures even under varied poses or styles, which improves im-
age quality and utility for applications like virtual try-on
(Wang et al. 2024). Nonetheless, StableGarment’s focus on
garment-centric generation leaves room for improvement in
more creative, text-driven garment design where designers
may seek dynamic visualizations of concepts (Wang et al.
2024).

While these models have advanced fabric-to-garment syn-
thesis in various ways, limitations remain in each. Mod-
els like SGDiff and DiffFashion struggle with accurately
preserving fabric textures and structural realism, especially
with complex patterns and materials (Sun et al. 2023; Cao
et al. 2023). Similarly, multimodal models like FashionSD-
X highlight the need for enhanced control and interpretabil-
ity in garment generation processes, especially when work-
ing with diverse stylistic inputs (Zhang, Zhang, and Xie
2024; Singh and Patras 2024). Addressing these gaps, the
proposed approach focuses on integrating textual control,
structure-aware synthesis, and texture fidelity to better meet
the practical needs of designers in the fashion industry.

Methodology
Development Tools and Environment
The development and experimentation process was con-
ducted using Google Colab Pro+, which provided access to
an NVIDIA A100 GPU. This was crucial for efficiently run-
ning computationally intensive workflows in ComfyUI, per-
forming evaluations, and preprocessing large datasets. Co-
lab was selected for its powerful GPUs, seamless integra-
tion with Google Drive, and support for Python-based work-
flows.

The entire implementation workflow was structured and
executed through modular Google Colab notebooks. Using
the A100 GPU environment, key stages of the implementa-
tion were separated for clarity, scalability, and ease of repro-
ducibility.
ComfyUI Execution Notebook: Responsible for loading
and launching the ComfyUI interface. This notebook han-
dled the setup of the environment, installation of depen-



dencies, model downloads, and initiation of the fabric-to-
garment generation workflows.
Evaluation Metrics Notebook: Conducted quantitative
evaluations of the generated outputs using metrics such as
FID, KID, SSIM, LPIPS, and CLIP-S. The results were
recorded for each of the three tested models: DreamShaper
v8, Realistic Vision v5.1, and MajicMix v5.
Preprocessing Notebook: Preprocessed all fabric screen-
shots into model-compatible images.

Dataset
Source and Collection The fabric images used for this
research were derived from the Fashion Product Images
Dataset available on Kaggle (Aggarwal 2017). A custom
dataset was manually created by taking high-quality screen-
shots of fabric regions from product thumbnails that clearly
displayed texture and pattern. These fabric screenshots
served as the primary conditioning input for the garment
generation pipeline.

Preprocessing To ensure compatibility with model re-
quirements, the following preprocessing steps were applied:
Resizing: All fabric images were resized to a resolution
of 512 × 512 pixels using LANCZOS interpolation, which
helps preserve texture fidelity.
Normalization: Pixel values were scaled to the range [0, 1]
and cast to uint8 format before being used in ComfyUI.
Filename Consistency: Images were renamed using a fixed
naming convention (e.g., fabric 01.png to fabric 10.png) to
ensure easy tracking and evaluation alignment.

Prompt Design Each fabric image was paired with a de-
scriptive prompt to guide the model in generating a garment
that reflects both the structure and style of the intended out-
put. The prompt template used was:

“A <garment type> made from this fabric.”

This design allowed the model to infer both the seman-
tic garment category (e.g., dress, shirt, jacket) and the ma-
terial context from the accompanying fabric image. By us-
ing a fixed, simple sentence structure across all samples, we
ensured prompt consistency, which is a best practice when
working with diffusion models, especially those using CLIP-
based guidance (Developers 2023).

Furthermore, the garment types were manually selected
to reflect a variety of fashion categories, ensuring that the
generation pipeline could handle different levels of garment
complexity (e.g., casual shirts vs. layered jackets) and for-
mality. The simplicity of the prompts was intentional, al-
lowing the image input (i.e., the fabric texture) to remain the
primary visual driver, while the text helped anchor the type
of output garment desired.

Model Overview
The architecture and workflow for generating garment im-
ages from fabric inputs were designed using ComfyUI, a
node-based interface for Stable Diffusion that enables a vi-
sually interpretable pipeline. To compare performance and

identify the most suitable configuration, three Stable Dif-
fusion 1.5-compatible pre-trained models were used in the
experimentation phase.

ComfyUI Architecture and Workflow ComfyUI is a
modular, graph-based user interface for working with Sta-
ble Diffusion models (Contributors 2023). It enables precise
control over every step in the diffusion process and sup-
ports custom workflows by connecting individual compo-
nents such as model checkpoints, samplers, VAE decoders,
and CLIP text/image encoders.

• Load Checkpoint Node: Loaded the pre-trained SD 1.5-
compatible model checkpoint.

• CLIP Text Encoder Node: Encoded the user-defined
prompt (e.g., “A dress made from this fabric”).

• LoRA Node: Optional node for style guidance using a
lightweight fine-tuned LoRA model.

• Load Image Node: Provided the preprocessed 512×512
fabric image input.

• VAE Encode + Decode Nodes: Encoded and decoded
latent representations of the image.

• KSampler Node: Controlled generation with parameters
like steps, sampler type, CFG scale, denoising, and seed.

• Save Image Node: Saved the output garment image.

Model Configurations and Parameters To determine the
optimal generation settings for high-quality, fabric-aware
garment synthesis, six unique configurations were selected
for experimentation. These were not chosen at random but
designed to explore variations across the key parameters
that influence image generation quality in Stable Diffusion
pipelines.

The Classifier-Free Guidance Scale (CFG) controls how
strongly the generation adheres to the input prompt. A low
value may produce outputs loosely guided by the prompt,
while too high a value can lead to over-saturation or loss
of realism. We tested a range from 7 to 10 to evaluate this
tradeoff.

The Steps parameter defines how many denoising itera-
tions the model performs. More steps typically allow better
detail recovery but come at the cost of generation time and
potential overfitting. We tested values between 40 and 60.

The Denoise Strength affects how much of the original
latent image is preserved during generation. A lower value
retains more of the original fabric structure, while a higher
value encourages creative deviation. Our tests spanned val-
ues from 0.85 to 1.0.

The Sampler Type controls the denoising algorithm. We
selected several samplers: Euler (known for smooth and bal-
anced results), DPM++ 2M and DPM++ 2M SDE (advanced
samplers offering more control but sometimes producing
sharper or chaotic details), and UniPC (a modern sampler
that balances noise and quality but may distort finer tex-
tures).

The parameter tuning was performed using the
DreamShaper v8 model on the input fabric: fabric 7.jpg.

Prompt Used: “A floral dress made from this fabric.”



Model Used: DreamShaper v8 (Stable Diffusion 1.5)

Figure 2: Parameter Experimentation Results using
DreamShaper v8 on fabric 7.jpg for the prompt: ”A floral
dress made from this fabric.”

Parameter Experimentation Results These six configu-
rations (Exp 1–6) provided us with a comprehensive grid
of different stylistic outputs, helping to empirically identify
the best tradeoff between prompt fidelity, fabric realism, and
garment structure. This rational selection enabled us to fine-
tune the generation pipeline with a strong foundation for
consistent evaluation across all models.

Among the tested configurations, Experiment 1 produced
the most visually accurate and semantically aligned out-
put. The resulting garment most effectively reflected the flo-
ral pattern of the input fabric and remained faithful to the
prompt: “A floral dress made from this fabric”. It offered
a good balance of prompt adherence and texture preserva-
tion, without the over-sharpness or distortion seen in other
configurations. In comparison, Experiment 2 (DPM++ 2M)
showed improved clarity but introduced structural inconsis-
tencies in the dress, while Experiment 3 (UniPC) resulted in
an overly saturated and slightly distorted output. Experiment
4 used fewer steps, leading to less detailed recovery, and Ex-
periment 5 with Denoise = 1.0 lost too much of the original
fabric identity. Finally, Experiment 6 (lower CFG) yielded
outputs that lacked strong prompt adherence.

Thus, Experiment 1’s configuration was chosen as the
fixed setup for evaluating all three models to ensure a fair
and consistent comparison.

Parameter Value
CFG Scale 8

Steps 50
Denoise Strength 0.85

Sampler Euler
Seed 2024

Table 2: Final fixed parameters selected for model compari-
son

Selected Pretrained Models from Civitai Three high-
quality pre-trained models were selected from Civitai, each
built upon the Stable Diffusion 1.5 architecture and known
for their strong capabilities in realistic image generation.
The models were chosen based on community reputation,
performance benchmarks, and their relevance to fashion-
focused visual synthesis (Civitai 2023).

All models were downloaded in the .safetensors format
to ensure compatibility and secure weight handling in Com-
fyUI. The selection criteria centered around models’ ability
to capture fine fabric textures, adhere to text prompts, and
maintain garment structure.

• DreamShaper v8
• Realistic Vision v5.1
• MajicMix Realistic v5

Model Name Version Description
DreamShaper v8 Realistic outputs with artistic

flair and fabric texture accu-
racy. Used as the base model.

Realistic Vision v5.1 Photorealistic model with
strong structure and sharp
texture. Ideal for detailed
synthesis.

MajicMix Realistic v5 Balanced realism and soft
style. Good for visually
appealing and consistent gar-
ments.

Table 3: Pretrained models selected from Civitai for garment
generation

Each model was tested using the exact same set of prepro-
cessed fabric inputs and corresponding descriptive prompts.
To ensure consistency and fairness across evaluations, the
same fixed configuration—determined during the parameter
experimentation phase—was applied to all generations.

Evaluation and Results
The evaluation strategy and results are presented through
both quantitative and qualitative analyses to assess how ef-
fectively each model generates realistic garments that pre-
serve fabric texture, follow the input prompt, and maintain
garment structure. By applying established evaluation met-
rics from related works, we ensured objective assessment
and fair benchmarking across models.



Quantitative Evaluation
The quantitative evaluation included metrics that measured
the visual fidelity, structural similarity, and semantic align-
ment of generated garments with input fabrics and textual
descriptions.

Fréchet Inception Distance (FID): FID, introduced by
(Heusel et al. 2017), measures the similarity between two
distributions of features from real and generated images us-
ing the Fréchet distance:

FID = ||µr −µg||2 + Tr
(
Σr +Σg − 2 · (ΣrΣg)

1
2

)
(1)

• µr, µg: Mean vectors of features from real (r) and gener-
ated (g) images.

• Σr, Σg: Covariance matrices of features from real and
generated images.

FID was used to evaluate the realism of the generated gar-
ments, offering insight into the model’s ability to synthesize
textures and structural garment details.

Kernel Inception Distance (KID): KID, introduced by
(Bińkowski et al. 2018), calculates the distance between two
feature distributions without assuming Gaussianity, based on
the squared Maximum Mean Discrepancy (MMD):

KID(X,Y ) =
1

m(m− 1)

∑
i̸=j

k(xi, xj)+
1

n(n− 1)

∑
i̸=j

k(yi, yj)−
2

mn

∑
i,j

k(xi, yj)

(2)
• X,Y : Feature representations of real and generated im-

ages.
• k: Polynomial kernel function.
• m,n: Number of samples in each distribution.

KID allowed evaluation of distribution similarity between
real and generated garments, complementing the FID evalu-
ation.

SSIM and LPIPS: SSIM (Structural Similarity Index
Measure) (Wang et al. 2004) measures local similarities in
pixel intensity, capturing luminance, contrast, and structural
fidelity:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3)

LPIPS (Learned Perceptual Image Patch Similarity)
(Zhang et al. 2018) computes perceptual similarity by com-
paring deep network features:

LPIPS(x, y) =
∑
l

wl ||ϕl(x)− ϕl(y)||22 (4)

• x, y: Real and generated image patches.
• ϕl: Activation from layer l in a deep neural network.
• wl: Learned weights for layer l.

SSIM and LPIPS were used to assess how well structural
consistency and perceptual quality were preserved in gener-
ated garments.

CLIP Score (CLIP-S): (Radford et al. 2021) introduced
CLIP Score to evaluate semantic similarity between text and
image embeddings using cosine similarity:

CLIP − S(t, i) =
ϕt · ϕi

||ϕt|| ||ϕi||
(5)

• t: Text description embedding.

• i: Generated image embedding.

• ϕt, ϕi: CLIP embeddings of the text and image.

CLIP-S was used to evaluate alignment between gener-
ated outputs and the descriptive garment prompts, ensuring
the models generated garments consistent with user intent.

Qualitative Evaluation
The qualitative evaluation focused on visual comparison
of generated garments across the three Stable Diffusion
1.5 models. This helped assess texture adherence, garment
shape, and overall fidelity with the conditioning fabric and
prompt.

Unlike traditional comparisons against state-of-the-art
(SOTA) models like SGDiff or StableGarment, the evalua-
tion focused on internal performance across the three mod-
els: DreamShaper v8, Realistic Vision v5.1, and MajicMix
Realistic v5. These models were tested on identical fabric
inputs and prompts using a fixed generation configuration to
ensure fair comparison.

Visual Comparisons: Garment outputs were visually in-
spected to assess fabric structure preservation, prompt rel-
evance, and garment realism. Specific attention was paid
to fine details such as texture flow, design consistency, and
fabric-structure alignment.

Quantitative Results
The quantitative evaluation compared the three selected
models (introduced in the Model Overview section) using
the five key metrics implemented in Python and PyTorch-
based libraries. Table 4 summarizes the models’ perfor-
mance across these metrics.
To enhance understanding of the performance differences,
the results were also visualized using graphical methods.
Figure 3 displays the FID scores separately due to their
larger numerical scale, clearly showing Realistic Vision v5.1
achieving the best realism. Meanwhile, Figure 4 presents a
radar chart comparing the normalized KID, SSIM, LPIPS,
and CLIP-S scores, offering a concise multivariate view of
each model’s performance profile. This visualization reveals
that while DreamShaper v8 slightly outperforms in percep-
tual texture fidelity (LPIPS), Realistic Vision v5.1 consis-
tently dominates across all other metrics, including struc-
tural alignment (SSIM), semantic accuracy (CLIP-S), and
overall distribution similarity (KID). Together, these charts
provide both metric-specific insights and an integrated per-
formance overview, supporting more informed model com-
parisons.



Model FID ↓ KID ↓ SSIM ↑ LPIPS ↓ CLIP-S ↑
DreamShaper v8 411.89 0.1816 0.3933 0.6076 0.2688
Realistic Vision v5.1 362.12 0.0894 0.4460 0.6628 0.2829
MajicMix Realistic v5 387.61 0.1733 0.3365 0.6432 0.2662

Table 4: Quantitative Evaluation Metrics for Each Model (lower FID, KID, LPIPS = better; higher SSIM, CLIP-S = better)

Figure 3: FID Score Comparison Across Models (Lower is
Better)

Figure 4: Radar Chart Comparison of Normalized Metrics:
KID, SSIM, LPIPS, CLIP-S

Qualitative Results
A side-by-side visual comparison was conducted for each
model using the same fabric input and prompt. This allowed
a closer assessment of visual quality, texture retention, gar-
ment shape, and adherence to prompt semantics.
DreamShaper v8 produced consistent textures and vibrant
color mapping across most outputs, making it suitable for
maintaining fabric fidelity.
Realistic Vision v5.1 outperformed in structure retention
and photorealism, accurately reflecting the intended garment

type and silhouette.
MajicMix v5 delivered creative and stylish results, but
sometimes exaggerated patterns or deviated slightly from
the prompt semantics.

For example, in Row 7 (Floral Dress) (see Figure 6),
DreamShaper and Realistic Vision both preserved the flower
motif, but DreamShaper produced a more elegant and wear-
able output. In contrast, MajicMix added stylized lighting
and fashion flair, which, while appealing, introduced artistic
deviation.

Conclusion
This research successfully explored the application of
diffusion-based image generation pipelines for generating
garments from fabric images and descriptive prompts, aim-
ing to reduce reliance on physical prototyping and support
sustainable fashion design. By building and evaluating a
Stable Diffusion 1.5 pipeline in ComfyUI, three pretrained
models were compared through quantitative and qualitative
assessments. Realistic Vision v5.1 consistently achieved the
best performance across realism, structural alignment, and
semantic accuracy, making it ideal for photorealistic gar-
ment visualization workflows that minimize textile waste.
DreamShaper v8, while weaker on realism metrics, excelled
in perceptual texture fidelity, making it valuable for early-
stage textile design exploration where preserving fabric de-
tail is key. MajicMix v5 delivered balanced, stylized outputs
but lagged behind in structural and semantic precision, mak-
ing it more suitable for conceptual or editorial use. Together,
these findings highlight the practical potential of diffusion-
based models to transform the fashion design process by
accelerating prototyping, enhancing creative flexibility, and
supporting more sustainable industry practices.

Limitations
Despite achieving the core objectives, several limitations
were encountered. Hardware constraints prevented direct
model training or fine-tuning due to insufficient GPU mem-
ory, restricting the research to inference-only workflows in
ComfyUI. The limited dataset scope, using only 10 fabric-
garment pairs, provided a proof-of-concept but reduced ex-
posure to diverse patterns, styles, and materials. Addition-
ally, restricted model customization arose because, while
ComfyUI allowed rapid pipeline construction, it lacked sup-
port for integrating custom model layers or loss functions
without deeper source-level modification. Finally, repro-
ducibility challenges were noted, as although ComfyUI pre-
serves visual node graphs, detailed parameter logging and
prompt-image matching documentation were not systemati-
cally maintained.



Model Strengths Weaknesses Best Use Case

Realistic Vision v5.1 Highest realism, structure and
prompt alignment (best FID,
KID, SSIM, CLIP-S)

Slightly lower texture preserva-
tion (LPIPS)

Sustainable design pipelines focused on
photorealistic garment visualization

DreamShaper v8 Strong texture fidelity (best
LPIPS), vibrant fabric rendering

Lower realism (worst FID),
lower prompt alignment (CLIP-
S)

Early-stage textile design exploration
where fabric details are prioritized

MajicMix v5 Balanced and creative styliza-
tion

Lower structural and semantic
accuracy across metrics

Editorial or conceptual fashion design
where style is prioritized over precision

Table 5: Summary of Model Comparison: Strengths, Limitations, and Application Contexts

Future Work
Several opportunities remain to extend and improve this
work. Custom model training using higher-end GPUs could
enable fine-tuning or training diffusion models for enhanced
texture transfer and garment fidelity. Stronger condition-
ing techniques, such as contrastive learning or multi-stage
pipelines, may improve the model’s ability to preserve intri-
cate fabric patterns and structure. Expanded evaluation in-
volving larger fashion industry datasets and direct feedback
from designers would support more practical, user-centered
assessments. Additionally, developing an interactive inter-
face, such as a web-based frontend for real-time fabric up-
loads, prompt entry, and output generation, could make the
system more accessible to design professionals. Finally, fur-
ther exploration of LoRA tuning may enhance style transfer
consistency across diverse garment types and prompts.
The dataset and project materials are available at: https://
github.com/Ilham7x/fabric2garment-generation
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Figure 5: Visual comparison of garments generated by DreamShaper v8, Realistic Vision v5.1, and MajicMix v5 on fabric
inputs (1-5).



Figure 6: Visual comparison of garments generated by DreamShaper v8, Realistic Vision v5.1, and MajicMix v5 on fabric
inputs (6-10).


