
Symbiotic Human–AI Collaboration For Augmented Cybersecurity Operations

Reda Yaich1, Alexandre Balondrade2, Antoine Sicard3, Christelle Fouquiau2, Guillaume Giraud3,
Kahina Amokrane-Ferka1, Emmanuel Arbaretier2

1 IRT SystemX, 2 Airbus Protect, 3 Réseau de Transport d’Électricité (RTE)

Abstract

Security Operations Centres (SOCs) face mounting cognitive
and operational demands as cyber threats increase in scale
and complexity. This paper proposes a human-AI collabora-
tion framework to augment SOC effectiveness through cogni-
tive profiling and agentic coordination. We map 29 core SOC
functions across three cognitive dimensions, thinking mode,
attention level, and coordination context, revealing a concen-
tration of tasks in cognitively saturated zones requiring slow
thinking, high attention, or collective decision-making. To ad-
dress these challenges, we introduce a multi-agent architec-
ture grounded in the Belief–Desire–Intention (BDI) model
and structured by an extended VOWEL+U framework that
embeds human oversight into agentic ecosystems. We define
four AI agent roles, Assistant, Auto-Pilot, Companion, and
Operator, aligned with operational autonomy levels to sup-
port function-specific delegation. Building on this, we pro-
pose a new SOC function: Agent Collaboration and Oversight
(F30), reflecting the emerging need for human supervision
and configuration of agentic behaviour. Together, these con-
tributions outline a path toward symbiotic human-AI SOCs,
which can shift cognitive load, enhance decision quality, and
ensure accountable, adaptive cyberdefence.

1 Introduction
The increasing complexity of modern cyber threats and
the expanding scope of digital infrastructures have placed
unprecedented demands on Security Operations Centres
(SOCs). Analysts today must interpret vast and heteroge-
neous data streams, respond under high temporal and cogni-
tive pressure, and coordinate actions across diverse techni-
cal and business domains. While artificial intelligence (AI)
has been introduced to assist with detection and response,
many deployments remain narrowly focused, poorly aligned
with human reasoning, or insufficiently integrated into the
broader operational workflow. The result is a growing mis-
match between the cognitive capacity of SOC personnel
and the complexity of their operational environment. Ana-
lysts face what can be described as a cyber cognitive over-
load, driven by high alert volume, evolving attack vectors,
and insufficient decision support. At the same time, emerg-
ing AI technologies, particularly those based on large lan-
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guage models, multi-agent systems, and symbolic architec-
tures, offer the potential for deeper collaboration and cogni-
tive augmentation.

This paper argues that the next generation of SOC ar-
chitectures must move beyond automation toward symbio-
sis: a design paradigm in which human analysts and AI
agents operate as interdependent cognitive partners. Achiev-
ing this requires (i) a principled understanding of SOC cog-
nitive functions, (ii) a functional taxonomy of security op-
erations, grounded in human capabilities, (iii) a structured
agent architecture that aligns with operational thinking, at-
tention, and collaboration patterns, and (iv) a coordination
framework that treats agents and humans as participants in a
shared mental model. To achieve this, We present a compre-
hensive framework for augmenting SOC operations through
symbiotic human–agent collaboration. First, we introduce a
structured taxonomy of SOC essential functions, organised
across three operational domains, observability, steerabil-
ity, and evolvability, each capturing a distinct facet of the
analyst’s responsibilities. This taxonomy forms the founda-
tion for mapping the specific cognitive demands placed on
human operators. Building on this taxonomy, we apply es-
tablished models of cognition, namely, Kahneman’s dual-
process theory (Kahneman 2011) and Endsley’s attention
theory(Endsley 2017), to classify each function according
to its dominant mode of thinking (fast, slow, or no thinking),
its attentional requirement (high, low, or no attention), and
its coordination structure (individual, collective, or collabo-
rative). This mapping provides a basis for identifying which
tasks are most in need of augmentation, automation, or re-
design. To address these cognitive demands, we define four
distinct types of AI agents, Assistant, Auto-Pilot, Compan-
ion, and Operator, each aligned with specific roles within
a five-level autonomy model. These roles draw inspiration
from aviation and autonomous driving and are designed to
match the varying degrees of human supervision and trust
required in SOC settings.

We further integrate the Belief–Desire–Intention (BDI)
(Georgeff et al. 1970) agent model to support transparent,
context-aware reasoning and to enable shared mental mod-
els between humans and machines. This enhances the ex-
plainability and adaptability of agent behaviour within col-
laborative workflows. To ensure scalable and coherent coor-
dination between multiple agents and human operators, we
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Figure 1: Reference Model of SOC Functions across Observability, Steerability and Evolvability operational domains

extend the established VOWELS (da Silva and Demazeau
2002) multi-agent system framework by introducing a new
‘U’ dimension for User. The resulting VOWELS+U model
captures the structural, environmental, and social compo-
nents of agentic coordination while embedding human ac-
tors as first-class participants in the reasoning loop.

Finally, we formalise a new SOC function, Agent Collab-
oration and Oversight, capturing the emerging responsibility
of analysts to supervise, align, and co-evolve the behaviour
of intelligent agents. This function exists both at the oper-
ational level (through real-time co-reasoning) and at the ar-
chitectural level (through agent system design and configu-
ration), thus completing the proposed taxonomy and refram-
ing the SOC as a hybrid cognitive system.

2 The Challenge of Security Operations in
Modern SOCs

Modern SOCs face a confluence of challenges that strain
both technological infrastructure and human cognition. To
understand how human-AI collaboration can meaningfully
augment operations, we must first examine the nature of
decision-making under pressure and the functional land-
scape of SOC activities.

2.1 Decision-Making Under Complexity and
Pressure

Security Operations Centres (SOCs) operate under intense
pressure, characterised by continuous monitoring, high alert

volumes, and the need for rapid, high-stakes decision-
making. Analysts must detect, assess, and respond to evolv-
ing cyber threats with incomplete information, often in real
time. This high-cognitive-load environment is further com-
pounded by what we refer to as the seven V’s of cyber-
security complexity: Volume (e.g., thousands of alerts per
day), Velocity (real-time decision pressure), Variety (diverse
IT and OT data sources), Veracity (frequent inaccuracies
and false positives), Value (difficulty identifying what mat-
ters), Variability (rapid shifts in attacker techniques), and
Visualisation (fragmented, cognitively demanding user in-
terfaces). Each factor amplifies the cognitive burden on op-
erators, leading to risks of alert fatigue, tunnel vision, and
decision paralysis.

Adding to this cognitive saturation is the increasing un-
predictability of the threat landscape. Drawing inspiration
from the Johari Window model, we characterise SOC de-
cision contexts along four axes: Known Knowns (routine
alerts with known responses), Known Unknowns (recog-
nised but unsolved threat categories), Unknown Knowns (la-
tent knowledge within the organisation but inaccessible in
real time), and Unknown Unknowns (entirely novel or ad-
versarially obfuscated attacks). Analysts must navigate these
uncertain threat spaces while managing time constraints, in-
cident escalation pathways, and coordination across techni-
cal and business domains.

This convergence of cognitive overload and informational
uncertainty places fundamental limitations on the human op-
erator. It also exposes the misalignment between current au-



tomation approaches, which often substitute for labour with-
out respecting human mental models, and the real needs of
collaborative, adaptive cybersecurity work.

2.2 SOC Functions’ Taxonomy
To move beyond simplistic automation and toward mean-
ingful augmentation, we must first understand what SOC
analysts actually do, and how they do it. We introduce a
taxonomy of 29 core SOC functions, grouped into three
interdependent operational domains that capture the life-
cycle of cybersecurity operations: Observability, Steerabil-
ity, and Evolvability. Observability encompasses tasks that
transform raw telemetry into situational awareness: select-
ing data sources, configuring log extraction, performing cor-
relation and anomaly detection, querying event databases,
evaluating impact, and prioritising alerts. Steerability refers
to decision-making and action-taking functions, including
planning and triggering remediation, orchestrating cyber or
operational commands, managing remote interventions, and
escalating to crisis management if required. Evolvability
covers learning and adaptation activities such as conducting
post-mortems, writing reports, sharing or consuming Cyber
Threat Intelligence (CTI), and updating detection rules or
system configurations to avoid recurrence.

Each function is identified with a unique label (e.g.,
OF1–OF13 for observability, SF1–SF11 for steerability,
EF1–EF5 for evolvability), and reflects a cognitively distinct
unit of work. These functions were derived from a detailed
decomposition of current SOC practices across sectors (e.g.,
critical infrastructure, Aerospace, Automotive, Healthcare,
and defence) and were validated through expert review and
empirical literature on security operations.

In summary, SOC augmentation demands more than sim-
ple AI-Powered technological tooling. It requires a shift
toward symbiotic architectures that relieve attentional bur-
dens, align with human reasoning patterns, and enable scal-
able, transparent coordination across both technical and or-
ganisational lines. The next section introduces such a frame-
work, grounded in multi-agent design principles and struc-
tured around complementarity with human operators.

3 Cognitive Analysis of SOC Activities
The 29 functions defined in our SOC taxonomy represent
more than a set of operational tasks, they define a cognitive
landscape within which human analysts must continuously
perceive, interpret, decide, and act. To understand where
human-AI collaboration is most needed and how agentic
augmentation should be deployed, we analyse these func-
tions along three interdependent dimensions: thinking mode,
attentional requirement, and coordination structure. These
dimensions are grounded in well-established models of hu-
man cognition and team performance and together provide
a principled lens for designing symbiotic human-agent sys-
tems.

3.1 Thinking Modes: Fast Slow, and No Thinking
Drawing on Kahneman’s dual-process theory (Kahneman
2011), we classify each SOC function by its dominant think-

ing mode. System 1 (fast thinking) involves intuitive, auto-
matic responses based on pattern recognition and prior expe-
rience. It supports rapid triage, recognition of familiar attack
signatures, and routine decisions that require little conscious
effort. In contrast, System 2 (slow thinking) refers to deliber-
ate, effortful reasoning that is activated in novel, ambiguous,
or high-stakes scenarios. It underpins analytical tasks such
as multi-source correlation, impact assessment, and cross-
domain coordination. Finally, no thinking describes fully au-
tomated or reflexive tasks that require no conscious cogni-
tive effort from the operator. These are akin to human auto-
nomic functions like breathing or heartbeat, essential, con-
tinuous, and performed without deliberation. In the SOC,
this includes tasks such as routine data ingestion, low-risk
log forwarding, or system-enforced policy checks.

Our mapping shows that most SOC functions fall into the
slow-thinking or hybrid zones. Tasks such as selecting reme-
diation plans, assessing incident impact, or analysing CTI
demand high cognitive involvement. Even tasks that appear
routine often escalate into reflective reasoning due to signal
ambiguity or high-stakes consequences. This prevalence of
System 2 cognition exposes a key pain point: operators are
forced to reason deeply across a wide array of tasks, many
of which are ripe for delegation to agents, provided they are
transparent, explainable, and context-sensitive.

3.2 Attentional Requirements: Managing the
Finite Resource

While thinking mode determines how operators reason, at-
tention determines where and for how long they focus.
Drawing from attention theory (Endsley 2017), we clas-
sify each function into one of three categories: High Atten-
tion: Tasks that require sustained, focused attention (e.g.,
impact analysis, live coordination, CTI assessment). Low
Attention: Tasks that can be interleaved or backgrounded
(e.g., alert triage dashboards, rule maintenance). No Atten-
tion: Tasks that require no operator engagement, and are
ideally fully automated (e.g., data retention policy enforce-
ment, scheduled log extraction). Our analysis reveals a trou-
bling trend: the majority of high-value SOC functions are
also high-attention tasks. This includes complex detection
queries, threat modelling, incident communication, and CTI
exploitation. In contrast, only a handful of tasks—often low-
impact or infrastructural—are currently no-attention or truly
automatable. This imbalance creates attentional congestion,
where critical functions compete for finite cognitive band-
width, increasing the risk of errors and delays. Moreover, at-
tention is not a purely individual phenomenon in the SOC. In
many cases, effective attention must be shared across team
members, especially during incident response. Disparities in
mental models, domain expertise, or tool visibility often lead
to misaligned perception and fragmented situational aware-
ness, particularly when cyber analysts and operational stake-
holders must act together.



3.3 Capturing Coordination Complexity: From
individual Tasks to Cross-Domain
Collaboration

While some SOC functions—such as simple alert dismissal
or rule triggering—can be performed independently by a
single analyst, many critical tasks demand richer forms of
coordination. To capture these layered interactions, we dis-
tinguish three coordination contexts: (i) Individual tasks can
be completed by one analyst with local authority (e.g., exe-
cuting a remediation command), (ii) Collective tasks require
alignment among multiple SOC actors (e.g., L1-L3 escala-
tions or peer review of impact assessments), and (iii) Col-
laborative tasks span cybersecurity and business/operational
domains (e.g., communicating risk to plant engineers or co-
ordinating crisis response with safety teams).
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Figure 2: Illustration of Perception Gaps & Context Dept in
Collective and Collaborative SOC activities

The figure above (Figure 2), illustrates why cross-domain
collaboration is especially challenging. In the cybersecurity
context (upper half), two SOC analysts draw on the same
raw data but form different interpretations, creating a hor-
izontal Perception Gap [1] between their mental models.
In the operational context (lower half), business or safety
stakeholders likewise develop a distinct understanding of the
same data, yielding a second Perception Gap [2] within that
team. The vertical arrows labeled Context Depth (cyber →
ops) and (ops → cyber) capture the fact that SOC and op-
erational teams operate with different sets of contextual in-
formation (e.g., technical threat indicators versus business-
process constraints). Because each side possesses only a par-
tial context, they must translate and enrich one another’s un-
derstanding to align on a shared situational picture. These
dual perception gaps and asymmetric context depths high-
light why simple hand-offs or static dashboards often fail.
Agents designed for SOC augmentation must therefore not
only automate low-level functions but also actively medi-
ate between disparate knowledge domains, providing shared
representations, bilingual explanations, and context-aware
summaries that bridge both horizontal and vertical divides.

3.4 From Complexity to Clarity: Mapping
Cognitive Load Across SOC Functions

To better understand where cognitive burden accumulates in
Security Operations Centre (SOC) workflows, we classified
the 29 SOC functions presented before along three inter-
related dimensions: thinking mode (Fast, Slow, No think-
ing), attention level (No, Low, High), and coordination con-
text (Individual, Collective, Collaborative). This tridimen-
sional taxonomy enables a structured diagnosis of human
cognitive load and reveals where specific functions are more
amenable to automation, augmentation, or human preserva-
tion (cf. Figure 3).

The Individual Context heatmap shows that some tasks
in this category, such as data extraction (OF3), correla-
tion rule triggering (OF7), or Execution of Cyber Actions
(SF11)—cluster in the low cognitive demand zones (fast or
no thinking, low or no attention). These are strong candi-
dates for automation, where human effort adds little incre-
mental value. However, a few individual tasks—like dash-
board visualisation (OF10) and querying (OF9)—still sit
within high-attention zones, suggesting they would benefit
from interface-level augmentation rather than full autonomy.

In contrast, the Collective context heatmap is densely
populated in the slow-thinking, high-attention quadrant,
representing cognitively intensive activities performed by
SOC teams. These include Correlation Rules Administration
(OF6), Response Planning (SF1), Remediation Action and
Plans Selection (SF6), and Remediation Actions Orchestra-
tion (SF9). Their complexity and sensitivity demand careful,
deliberative coordination and highlight where tools should
support shared reasoning and reduce ambiguity rather than
attempting replacement.

The Collaborative context heatmap—capturing tasks that
involve coordination with business or operational stakehold-
ers, shows the broadest distribution across the grid. Func-
tions like Crisis Management (SF2), communication (SF3),
and RALs (Remediation Actions and pLans) Identification
and Impaxct quantification (SF4, SF5) span multiple cogni-
tive and attentional categories, reflecting the socio-technical
complexity of decision-making across domains. These func-
tions cannot be isolated to automation pipelines; they require
systems that support mutual understanding, shared mental
models, and cross-domain explanation. When considered to-
gether, these heatmaps illustrate a pronounced asymmetry:
very few SOC functions occupy the “ideal” quadrant of fast
thinking, low attention, and individual execution, the con-
ditions most favourable for automation. Instead, the cogni-
tive landscape of SOCs remains dominated by high-attention
and efforts, interdependent decision-making, underscoring
the burden placed on analysts and teams to bridge techno-
logical and organisational gaps and depts. This multidimen-
sional mapping not only provides a diagnostic lens for cog-
nitive saturation but also forms the foundation for strategic
delegation in Human–AI collaboration. It helps identify (i)
which tasks are ripe for agent delegation or intelligent au-
tomation; (ii) where human cognitive effort must be pre-
served or enhanced; and (iii) which coordination bottlenecks
most impair agility and decision quality.



In summary, SOC augmentation demands more than sim-
ple AI-Powered technological tooling. It requires a shift
toward symbiotic architectures that relieve attentional bur-
dens, align with human reasoning patterns, and enable scal-
able, transparent coordination across both technical and or-
ganisational lines. The next section introduces such a frame-
work, grounded in multi-agent design principles and struc-
tured around complementarity with human operators.

4 A Symbiotic Human–Agent Collaboration
for Cybersecurity operations

Drawing from the cognitive characteristics of Security Op-
erations Centre (SOC) work, the cognitive burdens imposed
by modern cyber threats, and the architectural affordances of
agent-based systems, we propose a symbiotic framework for
Human–AI collaboration in cybersecurity operations. This
framework recognises that effective augmentation requires
more than automation; it requires the design of collabora-
tive agentic systems that can align with, adapt to, and extend
human cognitive capabilities.

At the heart of our proposed framework lies a triadic
alignment that enables effective human–AI collaboration in
SOC environments. First, cognitive alignment ensures that
agents support human reasoning by modelling both think-
ing modes (fast, slow, none) and attention levels (high, low,
none), thereby matching the psychological demands of the
task at hand. Second, agentic alignment structures the AI
system around specialised agent roles, each corresponding
to distinct levels of autonomy and complementarity with hu-
man capabilities. Finally, coordinative alignment is achieved
through a VOWEL+U multi-agent architecture (J. Da Silva
and Demazeau 2002), which formalises how agents inter-
act, organise, and interface with human operators across
team and organisational boundaries. These three layers of
alignment form a cohesive socio-cognitive defence model in
which the division of labour between human and machine is
not fixed, but dynamic, explainable, and symbiotic.

4.1 Defining Agentic Roles for the Cognitive and
Operational Augmentation of SOCs

The strategic integration of AI agents into SOCs demands
a careful consideration of how and when decision-making
authority should shift from human analysts to machine
counterparts. A valuable reference point for conceptualis-
ing this shift lies in the progressive autonomy models estab-
lished in high-reliability domains such as automotive driv-
ing, aerospace, and robotics, where human–machine task al-
location is structured along defined levels of control and del-
egation. These domains typically define autonomy along a
six-level spectrum (Levels 0 to 5), ranging from full human
control to full system autonomy. At Level 0, all decisions
and actions are performed manually by humans. Level 1
introduces assistive automation, where the system provides
suggestions or alerts, but the human retains full decision au-
thority. Level 2 allows partial execution, with the system car-
rying out predefined tasks under human supervision. Level 3
corresponds to conditional autonomy, where the system can
execute task sequences independently within known con-

ditions but requires human intervention when uncertainties
arise. At Level 4, the system achieves high autonomy, op-
erating independently in most scenarios with minimal over-
sight. Finally, Level 5 represents full autonomy, where the
system performs all functions across all conditions without
any human input or supervision.

In the cybersecurity domain, such levels are conceptually
useful but practically uneven in their applicability. SOC en-
vironments deal with incomplete data, evolving threats, and
contextual ambiguity—conditions that often defy clean au-
tomation thresholds. As such, we adopt a more function-
ally grounded taxonomy, collapsing the six-level spectrum
into four practical levels of autonomy, preceded by Level 0,
where no AI is involved and all functions are handled man-
ually by human operators. This simplification serves two
key purposes. First, it recognises that not all SOC activi-
ties require fine-grained control separation; most functions
can be supported by either assistive, automated, collabora-
tive, or delegative agents. Second, it acknowledges that the
level of autonomy varies across SOC functions, and even
across phases of the same task. For instance, in intrusion
detection and prevention, many organisations already use
Level 3 systems, such as Intrusion Prevention Systems (IPS)
that can automatically isolate compromised endpoints under
predefined conditions. Similarly, SOAR (Security Orches-
tration, Automation and Response) platforms may triage
low-priority alerts or execute pre-scripted remediation ac-
tions without human intervention. Yet this autonomy is far
from universal. For critical or ambiguous incidents, such
as assessing the business impact of an attack or coordinat-
ing a crisis response, humans remain irreplaceable due to
their ability to interpret uncertainty, reconcile conflicting
inputs, and weigh trade-offs. Much of the current human
workload in SOCs stems from the absence or immaturity
of autonomous support in functions that otherwise could be
shared or delegated. This heterogeneity necessitates a hybrid
model, in which agents vary in autonomy depending on task
characteristics, and human operators act as both analysts and
orchestrators of the AI systems they oversee.

To make this model operational, we define four core
agentic roles, each corresponding to a distinct level of
practical autonomy. Assistant Agents (Level 1–2): These
agents support the operator with recommendations, con-
textual information, or summarisation, but never act inde-
pendently. They are suited to cognitive or attentional re-
lief in low-risk, operator-led tasks. Auto-Pilot Agents (Level
2–3): These agents execute predefined actions under stable
conditions, typically in high-volume, low-criticality work-
flows. While they reduce operational overhead, they oper-
ate strictly within scripted boundaries. Companion Agents
(Level 3–4): These agents reason alongside the operator,
handling tasks that require deliberation, interpretation, and
multi-domain coordination. They are collaborative partners,
not just executors. Operator Agents (Level 4+): These are
high-autonomy agents capable of making decisions and exe-
cuting actions under constrained delegation. They are appli-
cable in real-time containment, autonomous hunting, or pol-
icy enforcement scenarios, where timely and trustable au-
tonomy is critical. These agentic roles serve as practical in-



Figure 3: Cognitive load across SOC functions, by Thinking Mode (Fast/Slow/No) and Attention Level (No/Low/High), sepa-
rated by Operational Context (Individual | Collective | Collaborative).

stantiations of the autonomy spectrum tailored to SOC con-
texts. They do not replace humans but complement them,
shifting selected tasks from high to low attention, from
slow to fast thinking, and from distributed coordination to
localised execution. This enables a structured, cognitively
aligned, and role-specialised augmentation of the modern
SOC.

4.2 Building Human-AI Shared Situational
Awareness with BDI Mental Models

Security operations are not only technical but deeply cog-
nitive and collaborative. As incidents increase in complex-
ity and cross-functional boundaries, effective cybersecurity
decision-making increasingly depends on a team’s ability to
build and maintain shared situational awareness—a common
understanding of what is happening, what it means, and what
must be done. To support this, we propose that the design of
AI agents in SOCs should be guided by an explicit model
of mental representation and deliberation—specifically, the
Belief–Desire–Intention (BDI) model (Georgeff et al. 1970).

Originally proposed by Michael Bratman in the context
of human practical reasoning and widely adopted in agent-
based systems, the BDI model offers a structured cogni-
tive architecture that mirrors human decision-making pro-
cesses. Its three core components, Beliefs, Desires, and In-
tentions, are well-suited to modelling how SOC analysts
process data, set goals, and decide on actions in uncer-
tain and high-pressure environments. Beliefs represent the
agent’s current model of the world, including what it infers
to be true about the system’s status, alert history, threat in-
dicators, and operational constraints. In SOCs, these beliefs
would include ongoing telemetry, prior incidents, business-
critical systems, and contextual threat intelligence. Desires
correspond to possible or preferred system states that the
agent may wish to bring about. These can be strategic (e.g.,
maintaining system uptime, ensuring compliance) or tacti-
cal (e.g., isolating a suspicious endpoint). Desires serve to
encode priorities aligned with both cybersecurity and busi-

ness objectives. Intentions are the subset of desires to which
the agent commits in the current context, based on available
beliefs. They guide the agent’s planning and action. Impor-
tantly, intentions are context-sensitive and must remain con-
sistent with both the agent’s beliefs and organisational rules
of engagement.

This BDI architecture is particularly well-suited for sup-
porting shared mental models between humans and agents.
By explicitly modelling its beliefs and intentions, and ex-
posing these in natural language or visual form to the hu-
man operator, an agent can enable transparent collaboration,
improving trust and allowing the human to challenge, over-
ride, or adopt proposed goals. This supports both individual
situational awareness and its extension to team-level shared
awareness, which is essential during collaborative threat re-
sponse or crisis management. Moreover, BDI agents can be
designed to update their beliefs dynamically based on envi-
ronmental inputs (e.g., new log entries, alert status changes,
or external CTI feeds), to generate new desires from threat
models or escalation thresholds, and to filter and revise in-
tentions through deliberation. This loop mirrors the human
cognitive cycle and allows agents to participate not just in
automation, but in sensemaking and anticipatory reasoning.
In collaborative SOC scenarios, agents built on BDI princi-
ples can also support cross-role coordination. For example,
one agent may model the desires of a SOC operator (e.g.,
mitigating a risk), while another encodes business continuity
priorities (e.g., maintaining system availability). Negotiation
protocols or arbitration policies can then resolve conflict-
ing intentions, ensuring that actions align with both techni-
cal risk and organisational impact. In sum, embedding BDI
models into SOC agents provides a robust cognitive scaf-
fold for both local autonomy and inter-agent coordination,
while preserving the explainability and malleability needed
for human oversight. As SOCs evolve toward multi-agent,
multi-role environments, BDI-based mental models will be
key to realising symbiotic human–AI cognition, grounded
in shared awareness, adaptable reasoning, and operational
trust.



While the BDI model provides a high-level architectural
scaffold for reasoning and decision-making, it does not pre-
scribe specific implementations of belief formation, desire
generation, or intention planning. This modularity makes
BDI particularly well-suited for integration with state-of-
the-art AI techniques. For instance, beliefs—the agent’s rep-
resentation of world state—can be derived from machine
learning classifiers, anomaly detection algorithms, or log-
parsing models trained to recognise patterns of compromise.
Desires may be shaped by outputs from risk scoring systems,
rule-based policy engines, or business priority encoders. In-
tentions, in turn, can be formed or updated using planning
models or large language models (LLMs) capable of sce-
nario simulation, natural language reasoning, and playbook
synthesis. In this hybrid approach, LLMs function as de-
liberative modules within the BDI loop—providing narra-
tive explanations, exploring alternative hypotheses, or ne-
gotiating intent under ambiguity, while structured ML com-
ponents ensure robustness and statistical grounding. This
synergy allows agents to operate across symbolic and sub-
symbolic domains, enhancing both autonomy and trans-
parency in real-time human–machine collaboration.

4.3 Agentic Coordination with VOWEL+
To enable scalable, explainable, and resilient augmentation
of SOC workflows, the integration of AI agents must go be-
yond the definition of individual roles. A robust coordination
architecture is required to govern how agents interact with
each other, with the environment, and with human opera-
tors. To this end, we extend the VOWEL model, originally
proposed by Demazeau (da Silva and Demazeau 2002), by
introducing a sixth dimension focused explicitly on user
interaction: VOWEL+U. In its original form, the VOWEL
model defines four interlocking components, Agents, En-
vironments, Interactions, and Organizations, each modular
and independently configurable. Agents are defined by their
internal architecture (e.g., BDI or reactive), communication
capabilities, and decision-making logic. Environments en-
capsulate the data sources, system dynamics, and real-time
constraints within which agents operate. Interactions define
the protocols of communication and coordination, and Or-
ganizations formalize roles, reporting hierarchies, policies,
and rules.
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Figure 4: VOWEL+U Conceptual Architecture

Our extension adds a critical fifth dimension: The User.
In SOCs, human analysts are not merely observers or con-
sumers of AI output; they are active participants in the sys-
tem’s epistemic and operational cycles. The “U” dimension
therefore represents human-centred features, such as trans-
parence, explanation, argumentation, mutual adaptation, that
enable trustworthy and meaningful human–agent collabora-
tion. The proposed VOWEL+U architecture allows multiple
types of agents (i.e., Assistants, Auto-Pilots, Companions,
and Operators) to function within a cohesive multi-agent
system. Coordination is achieved not through rigid pipelines
but through distributed reasoning and context-aware task al-
location. Human oversight is embedded at the organisational
and interaction levels, while agent-to-agent communication
ensures distributed coverage and responsiveness. As agents
grow in autonomy and specialisation, the need for such ar-
chitecture becomes increasingly critical to ensure perfor-
mance, resilience, and trust.

4.4 Evolution of SOC Functions: From Operation
to Agentic Oversight

As SOCs move toward deeper integration of AI agents, the
human role must evolve accordingly. This mirrors the archi-
tectural expansion from the traditional VOWEL model, fo-
cused on agent, environment, interaction, and organisational
design, toward VOWEL+U, which explicitly integrates the
human user as a core participant in the multi-agent system.
In this paradigm, human analysts are no longer merely re-
cipients of automation outputs but are active collaborators
in shaping agent behaviour, validating system decisions, and
co-constructing shared cognitive models.

To reflect this shift, we introduce a new SOC function:
F30 – Agent Collaboration and Oversight. This function for-
malises the human–agent interface as an operational capa-
bility. It encompasses monitoring agent recommendations,
challenging flawed or incomplete inferences, tuning agent
parameters based on evolving threat contexts, and interven-
ing in ambiguous or adversarial situations. It also includes
high-level tasks such as designing intent models, setting
trust thresholds, and calibrating response playbooks across
agent teams. Importantly, F30 manifests differently across
SOC tiers. At Tier 1, it may involve reviewing and ap-
proving agent-proposed triage or containment actions. At
Tier 2, it involves adjusting response strategies in concert
with agent assessments. At Tier 3 or architectural levels,
it includes curating the multi-agent system itself—defining
its structure, constraints, and evolution over time. As such,
Agent Collaboration and Oversight is not a technical add-
on, but a strategic function that ensures human values, sit-
uational judgment, and mission alignment remain embed-
ded in automated operations. The integration of F30 signals
a broader transformation in SOC practice: from a reactive
control room to a symbiotic socio-technical system. It en-
ables agility, resilience, and human-in-the-loop accountabil-
ity at scale—hallmarks of effective cyberdefence in the AI-
augmented era.



5 Related Work
Building effective human–AI collaboration in Security Op-
erations Centres (SOCs) draws on two intertwined streams
of research (i) human–AI teaming and complementarity and
(ii) use of AI in cybersecurity operations.

Human–AI teaming often disappoints. Pairing with AI
isn’t a plug-and-play upgrade; success hinges on relative
strengths, task type, and a smart division of labor. A meta-
analysis of 106 studies finds that, on average, human–AI
pairs trail the stronger solo performer, with decision tasks
showing outright negative synergy and only creative tasks
delivering modest gains (Vaccaro, Almaatouq, and Malone
2024). When AI assumes an embodied, “desk-mate” role
rather than a passive tool, team performance can degrade
further. (Qin, Lee, and Sajda 2025) show that introduc-
ing a human-like AI teammate suppresses human–human
communication and disrupts neural synchrony, demonstrat-
ing that trust in AI alone fails to ensure effective collabo-
ration under high cognitive load. Yet complementarity re-
mains both a powerful goal and an attainable when AI is
considered as an active collaborator. Recent work, formal-
ized Complementary Team Performance (CTP) as the case
where a human–AI team outperforms either partner alone
(Hemmer et al. 2024). Conceptually, complementarity arises
when each partner—human or machine—focuses on tasks
that leverage its unique capabilities: humans on nuanced
judgment, ethical reasoning, and contextual interpretation;
AI on high-volume pattern matching, rapid computation,
and consistency . Empirical evidence (Hemmer et al. 2024)
confirms this: when tasks are carefully decomposed so that
AI handles sub-routines (e.g., low-level triage or data aggre-
gation) while humans perform high-stakes decisions, over-
all performance can exceed either working alone. (Steyvers
et al. 2022) further decomposed CTP into complementarity
potential (theoretical gains) and complementarity effect (re-
alized gains), pinpointing information and capability asym-
metries as key drivers of synergy (Steyvers et al. 2022).
Empirical studies in domains such as radiological diagno-
sis and financial forecasting (Fragiadakis et al. 2024) show
that, without thoughtfully designed interaction mechanisms,
human–AI teams rarely exploit their full complementarity.
Our work brings these insights into the SOC domain, map-
ping cybersecurity tasks to cognitive demands and identify-
ing precisely where human–agent teaming can deliver the
greatest uplift.

In cybersecurity, the use of AI to augment cyberdefense
operators has matured over the last decade. Modern SOCs
increasingly leverage AI-Based anomaly-detection models
to sift through millions of logs in real time. Likewise, so-
phisticated SOAR platforms heavily rely on Symbolic AI to
automate playbooks for containment and remediation (Kear-
ney et al. 2023). (Baruwal Chhetri et al. 2024) A frame-
work makes an important step by adapting agent autonomy
based on analyst workload, demonstrating a 30% reduction
in self-reported fatigue during triage exercises. However,
the proposed framework remains narrowly focused on that
single workflow and on three defined teaming modes (col-
laboration, augmentation, automation). It neither explains
why or when to switch from one mode to another, nor of-

fers a well defined mechanism for sustaining shared situa-
tional awareness. In contrast, our work profiles SOC func-
tions across three cognitive dimensions (thinking mode, at-
tention demand, coordination context), prescribes four finely
graded agent roles (Assistant, Auto-Pilot, Companion, Oper-
ator) grounded in BDI transparency to enable dynamic mode
selection and shared situational awareness across the entire
SOC lifecycle.

6 Conclusion & Future Work
This paper has proposed a structured approach to human–AI
collaboration in Security Operations Centres, grounded in
cognitive theory, task analysis, and multi-agent systems ar-
chitecture. We introduced a taxonomy of SOC tasks and
activities, classified by thinking mode, attention level, and
collaboration context. We mapped these to four agentic
roles, each corresponding to a specific teaming scope,
and showed how they align with levels of autonomy.
We extended the VOWEL framework to include human
agency (VOWEL+U), creating a foundation for cohesive
agent–human collaboration. Our framework enables imme-
diate augmentation of high-friction workflows and longer-
term transformation toward adaptive, trustable, and symbi-
otic cyberdefence teams.

Future work will include prototyping agent capabili-
ties, testing human–agent trust dynamics, and validating
the framework in operational SOC environments. As fu-
ture work, we plan to operationalize and rigorously evaluate
our framework through the development of concrete agent
prototypes—Assistant, Auto-Pilot, Companion, and Oper-
ator—integrated within existing SIEM/SOAR platforms,
where we will instrument real-time metrics of cognitive load
and uncertainty to drive dynamic autonomy selection.
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