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Abstract

Cyber-Physical Systems are integral to modern critical in-
frastructure, including manufacturing, energy grids, and au-
tonomous systems, but their increasing interconnectivity ex-
poses them to sophisticated cyber threats. Traditional security
measures, such as rule-based intrusion detection and single-
agent learning, often fail against adaptive and zero-day at-
tacks. To address this challenge, we propose a Hierarchical
Adversarially-Resilient Multi-Agent Reinforcement Learn-
ing (HAMARL) framework, integrating adversarial training
into a multi-agent security system. HAMARL leverages a hi-
erarchical control structure where local agents manage sub-
system security, and a global coordinator optimizes system-
wide defense strategies. Additionally, an adversarially-aware
learning loop simulates evolving cyber threats, allowing de-
fenders to preemptively adapt to sophisticated attacks. Evalu-
ations on a simulated industrial IoT testbed demonstrate that
HAMARL significantly enhances attack detection, reduces
response time, and maintains operational continuity com-
pared to traditional MARL approaches. Our findings suggest
that hierarchical MARL, combined with adversarial train-
ing, presents a promising advancement for securing next-
generation CPS.

Introduction
Cyber-Physical Systems (CPS) serve as the foundation of
modern infrastructure, seamlessly integrating computational
and communication capabilities with physical processes.
These systems have become increasingly critical in domains
such as manufacturing, smart grids, autonomous transporta-
tion, and healthcare, offering unprecedented automation,
efficiency, and real-time decision-making (Wolf and Ser-
panos 2019). However, the growing interconnectivity and
complexity of CPS expose them to an expanding range of
cybersecurity threats, including data tampering, advanced
persistent threats (APTs), and distributed denial-of-service
(DDoS) attacks (Conti et al. 2018). Traditional security
mechanisms, such as rule-based intrusion detection systems
and single-agent defensive models, struggle to keep pace
with these evolving threats, particularly as adversaries in-
creasingly leverage artificial intelligence (AI)-driven attack
strategies to circumvent conventional defenses.
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Recent advances in multi-agent reinforcement learning
(MARL) present a promising avenue for addressing CPS
security challenges. By distributing decision-making across
multiple agents, MARL enables scalable and coordinated
defense strategies, particularly in complex, decentralized en-
vironments (Buşoniu, Babuška, and Schutter 2010). Fur-
thermore, hierarchical reinforcement learning extends this
paradigm by incorporating a multi-level control structure,
where a higher-level policy supervises lower-level agents,
thereby improving both scalability and adaptability in large
CPS deployments (Vezhnevets et al. 2017). Despite these ad-
vantages, existing MARL-based security frameworks often
lack adversarial awareness, making them vulnerable to adap-
tive cyber threats. A purely reactive defense mechanism is
insufficient in adversarial settings where attackers continu-
ously evolve their tactics to evade detection (Goodfellow,
Shlens, and Szegedy 2015). Integrating adversarial train-
ing—where the system learns to counteract an evolving, AI-
driven attacker—can significantly enhance the resilience of
MARL-based security frameworks, ensuring proactive de-
fense against sophisticated, zero-day cyber threats.

Despite advances in MARL and adversarial learning,
current CPS security frameworks lack a unified approach
that integrates hierarchical coordination with adversarial
resilience. Unlike traditional MARL-based security ap-
proaches, which operate in a flat or decentralized struc-
ture, our framework introduces a hierarchical design where
local agents perform fast, independent intrusion detection
while a global coordinator ensures network-wide threat mit-
igation. Additionally, adversarial training enables defend-
ers to proactively adapt to dynamic, AI-driven cyber threats
rather than relying on static rule-based security policies.
This gap leaves critical infrastructure vulnerable to evolving
threats, necessitating a framework that continuously learns
and adapts to adversarial strategies. This paper addresses the
following research questions:

1. Can hierarchical MARL improve real-time threat detec-
tion and response efficiency in CPS security?

2. Does integrating adversarial training enhance resilience
against zero-day attacks compared to standard MARL
approaches?

3. How does a hierarchical defense structure impact scala-
bility, computational efficiency, and decision-making in



CPS environments?

To address these challenges, we introduce Hierarchical
Adversarially-Resilient Multi-Agent Reinforcement Learn-
ing—a novel CPS security framework that integrates hierar-
chical MARL with adversarial training to enhance CPS se-
curity. By modeling both defenders and attackers as learn-
ing agents within a cooperative-competitive environment,
we demonstrate how hierarchical MARL can provide adap-
tive, real-time threat detection and mitigation. Specifically,
our contributions include:

1. A novel hierarchical multi-agent architecture designed to
enhance scalability and efficiency in CPS security.

2. An adversarial training loop that simulates evolving cy-
ber threats, enabling defenders to anticipate and counter-
act advanced attack strategies.

3. A comprehensive evaluation of our framework’s effec-
tiveness in terms of detection accuracy, system resilience,
and robustness against zero-day threats using a simulated
industrial IoT testbed.

The remainder of this paper is structured as follows. The
next section provides an overview of related work. We then
introduce the proposed hierarchical MARL framework. This
is followed by a description of the implementation and ex-
perimental setup. The results and performance analysis sec-
tion examines detection accuracy, response time, and re-
silience against adversarial attacks. We conclude with future
research directions to include multi-attacker scenarios, ex-
plainable AI, and real-world deployment feasibility.

Related Work
Cyber-Physical Systems Security
Cyber-Physical Systems are characterized by tightly inte-
grated computational and physical processes, where em-
bedded sensors and actuators interact in real-time to en-
able autonomous decision-making (Baheti and Gill 2011).
The security of these systems involves protecting both the
network infrastructure and physical components from ma-
licious disruptions (Lee 2008). However, the complexity of
CPS architectures—often spanning legacy industrial proto-
cols, wireless sensor networks, and cloud-connected ser-
vices—poses significant challenges for designing unified se-
curity solutions. Furthermore, the requirement for continu-
ous operation, where downtime can lead to severe economic
and safety consequences, necessitates the adoption of auto-
mated and adaptive security mechanisms to ensure resilience
against cyber threats.

Multi-Agent Reinforcement Learning
Reinforcement learning is a machine learning paradigm
where agents learn optimal behaviors by interacting with
an environment and receiving feedback in the form of re-
wards or penalties(Sutton and Barto 2018). Multi-Agent Re-
inforcement Learning extends this concept to multi-agent
environments, where multiple agents simultaneously learn
and optimize their policies while considering interactions
with others(Buşoniu, Babuška, and Schutter 2010). MARL

approaches can be broadly categorized into: (a) Fully de-
centralized methods, where each agent learns independently
without centralized coordination (Matignon, Laurent, and
Fort-Piat 2012). (b) Centralized training with decentralized
execution (CTDE), allowing agents to coordinate effectively
during training but act independently at runtime (Lowe et al.
2017). (c) Hierarchical MARL, which decomposes decision-
making into higher-level and lower-level policies, thereby
improving both sample efficiency and scalability in com-
plex environments (Kulkarni et al. 2016). While MARL has
demonstrated success in robotics, autonomous systems, and
network optimization, its application in cybersecurity for
CPS remains underexplored. Furthermore, existing MARL-
based intrusion detection and defense mechanisms often
lack adversarial robustness, making them susceptible to so-
phisticated cyber threats.

Adversarial Learning and Game Theory
In the context of cybersecurity, adversarial learning in-
volves modeling malicious actors who attempt to evade de-
tection or manipulate system behavior(Goodfellow, Shlens,
and Szegedy 2015). This aligns well with game-theoretic
security models, where defenders and attackers can be
represented as players with conflicting objectives(Shapley
1953). Incorporating adversarial learning into security sys-
tems enables proactive defense strategies, where defend-
ers are trained against worst-case attack scenarios to en-
hance system resilience (Standen, Kim, and Szabo 2025).
In CPS security, adversarial learning is particularly rele-
vant because attackers can leverage AI-driven techniques
to continuously adapt their strategies. Integrating adversar-
ial learning into MARL-based defense mechanisms allows
security agents to anticipate and counteract adaptive cyber
threats. Additionally, the competitive-cooperative nature of
multi-agent environments makes game-theoretic approaches
particularly useful, as defenders must coordinate responses
while mitigating attacks from intelligent adversaries (Conti
et al. 2018).

Positioning of This Work
Although there have been several investigations into MARL
for intrusion detection(Louati, Ktata, and Amous 2024) and
adversarial learning for robust classification(Goodfellow,
Shlens, and Szegedy 2015), there is a lack of research
that integrates hierarchical MARL with adversarial train-
ing specifically for CPS security. Addressing this gap,
our work introduces a Hierarchical Adversarially-Resilient
Multi-Agent Reinforcement Learning framework that: (a)
Structures multiple defender agents under a hierarchical co-
ordinator, ensuring efficient and scalable threat mitigation.
(b) Incorporates an adaptive adversarial training loop, where
the system continuously learns from evolving attack strate-
gies to enhance resilience. By bridging hierarchical MARL
and adversarial learning, our approach extends prior work
and contributes to the growing field of AI-driven cybersecu-
rity for CPS (Rashid et al. 2020). The proposed framework is
designed to improve real-time intrusion detection, response
efficiency, and adaptability, making it a novel and practical
solution for securing modern CPS environments.



Theoretical Foundations for Hierarchical
Adversarial MARL

In this section, we formalize the hierarchical multi-agent
framework with an explicit adversarial agent. Let there beN
defender agents (local) plus one global coordinator, collec-
tively denoted {πθ1 , . . . , πθN , πϕ}, and one adversarial at-
tacker πψ . The environment is thus modeled as a Markov
game (partially observed stochastic game) with (N + 2)
agents (N defender agents, a global coordinator, and an
adaptive attacker).

Definition 0.1 (Markov Game with Adversary). A Markov
game (MG) with an adversarial agent is defined by the tuple

G =
〈
S, {Ai}N+2

i=1 , P, {ri}
N+2
i=1 , γ

〉
,

where:

• S is the state space, including subsystem statuses and
sensor data.

• Ai is the action space for agent i ∈ {1, . . . , N,N +
1, N+2} (whereN+2 represents the adversarial agent).

• P (s′ | s,a) is the transition kernel describing how the
environment evolves given state s and action a.

• ri(s,a) is the reward function for agent i.

– Defender agents (1 ≤ i ≤ N ): Receive positive re-
wards for successful detections or patches (ri > 0)
and negative rewards for false alarms or missed com-
promises (ri < 0).

– Attacker agent (N+2): Earns positive rewards for suc-
cessful system compromises (rN+2 > 0).

• γ ∈ (0, 1) is the discount factor that govern how agents
value future rewards.

Each local defender observes a partial state ωi ⊂ s, while
the global coordinator maintains an aggregate representation
g of local states or actions. The adversarial agent πψ may
also observe only a partial state of the system.

To capture the interaction between local defenders, the
global coordinator, and the adversary, we factorize the joint
policy as follows:

Proposition 0.2 (Factorization of Joint Policy in Hierar-
chical-Adversarial Setting). Let πθii = 1N be the local de-
fender policies, πϕ be the global coordinator policy, and πψ
be the attacker policy. Then, the joint policy over actions
a = a1, . . . , aN , aglobal, aattacker can be expressed as:

πΘ,ϕ,ψ(a | s) =
( N∏
i=1

πθi(ai | ωi)
)
πϕ(aglobal | g)

× πψ(aattacker | ωatt).

Remark 1. This factorization forms the basis for multi-agent
training, where each agent updates its policy using Proximal
Policy Optimization (PPO) steps, contingent on its partial
observability.

Generalized Advantage Estimation and PPO
Following (Schulman et al. 2016, 2017), each agent main-
tains a parametric policy πθ with an associated value func-
tion Vθ(s). The advantage function, which estimates how fa-
vorable an action is compared to the expected value of the
state, is defined as:

Aθ(s, a) = Qθ(s, a)− Vθ(s)

To compute advantage estimates, we use the Generalized
Advantage Estimation (GAE) technique:

Ât =
T−t−1∑
k=0

(γλ)kδt+k, δt = rt + γV (st+1)− V (st).

Theorem 0.3 (Convergence of PPO in Hierarchical-Adver-
sarial MARL). Consider the Markov game G with N + 2
agents, each employing PPO updates with GAE. Let θi, ϕ, ψ
be their respective parameters. If each agent’s policy im-
proves according to the clipped objective in (Schulman et al.
2017) within a bounded trust region, under standard as-
sumptions (bounded rewards, Markov mixing, sufficiently
large batch data and exploration), the system converges to
a stationary point (θ∗i , ϕ

∗, ψ∗) that constitutes a local Nash
equilibrium. Specifically:

∇θiL(θ∗i ; θ∗−i, ϕ∗, ψ∗) = 0,

∇ϕL(ϕ∗; θ∗, ψ∗) = 0,

∇ψL(ψ∗; θ∗, ϕ∗) = 0.

Sketch Proof of Theorem 0.3. Each agent’s PPO update can
be viewed as a stochastic gradient ascent step on the clipped
surrogate objective, which ensures per-update monotonic
improvement within a specified ratio bound. The hierar-
chical nature of our approach does not disrupt the fun-
damental convergence properties of PPO-based MARL.
The global coordinator, despite aggregating decentralized
agent policies, does not interfere with each agent’s in-
dependent policy update but rather enforces a structured
decision-making pipeline. Consequently, policy updates re-
main bounded within trust regions, preserving theoretical
convergence guarantees. Because all agents share the en-
vironment, the joint updates track a multi-agent gradient,
ensuring stability in learning. By standard arguments for
actor-critic methods in Markov games (Zhang, Yang, and
Basar 2021), if the reward and advantage estimates remain
bounded and each agent explores sufficiently, then with di-
minishing step sizes the parameters converge to a stationary
point. This point is a local Nash equilibrium: no single agent
can unilaterally improve its objective without changing other
agents’ policies.

Adversarial Resilience in Hierarchical Control
Definition 0.4 (Adversarial Resilience). Let (t) be the set of
subsystems compromised at time t.

• Compromise time τi of subsystem i is the number of
consecutive steps for which i ∈ (t) until it is restored,
formally τi = min{k > 0 | i /∈ (t+k)}.



• Compromise frequency of subsystem i is fi =
1
T

∑T
t=1 1[i ∈ (t)] over horizon T .

• Bounded compromise ratio is ϱ =
1
N

∑N
i=1 fi , 0 ≤ ϱ ≤ 1.

A defender policy set {πθ1 , . . . , πθN , πϕ} is (ϵ, δ)-resilient
if

Pr
[
ϱ ≤ ϵ

]
≥ 1− δ

for any attacker policy πψ admissible under the game dy-
namics.

Intuitively, adversarial resilience means that despite an at-
tacker that learns or changes tactics, the hierarchical defend-
ers maintain partial observability, coordinate responses, and
keep compromise in check over time.
Theorem 0.5 (Bounded Compromise in Equilibrium). Let
π∗
θi
, π∗
ϕ, and π∗

ψ be the equilibrium policies from Theo-
rem 0.3. Suppose the environment imposes a cost c > 0
on each compromised subsystem per time step for defenders
and a reward ra > 0 for each compromised subsystem for
the attacker. If c is sufficiently large relative to ra, then the
compromise ratio ϱ∗ in the long-run equilibrium is strictly
less than 1. Formally:

ϱ∗ = lim
T→∞

1

T

T∑
t=1

∑N
i=1 1{subsystem i at time t}

N
< 1.

Sketch Proof of Theorem 0.5. See Appendix for the full
derivation. Informally, the attacker’s marginal gain from
compromising an additional subsystem must be weighed
against defenders’ marginal cost for letting it remain com-
promised. If the defenders’ policies can patch or quarantine
effectively, the attacker cannot systematically keep all N
subsystems compromised without incurring large negative
feedback (through the defenders’ best response strategies).
Thus, ϱ∗ < 1 in equilibrium unless the attacker reward ra
dwarfs the defenders’ ability to penalize or detect. This re-
sult suggests that even in the presence of highly adaptive
attackers, the system maintains a level of resilience where
at least a fraction of subsystems remains uncompromised.
This aligns with real-world security requirements, where
maintaining full protection is impractical, but ensuring par-
tial containment prevents widespread failures. By balancing
proactive detection and strategic intervention, the hierarchi-
cal framework ensures that no single adversary strategy can
indefinitely degrade the entire system.

Remark 2. The synergy between local defenders (rapid
quarantines) and a global coordinator (system patches) ex-
emplifies hierarchical synergy. Even if local defenders oc-
casionally miss an attack, the global coordinator can handle
system-wide anomalies, ensuring no single attacker strategy
can indefinitely compromise all subsystems.

Proposed Methodology
Hierarchical Multi-Agent Architecture
In our framework, defender agents are organized hierarchi-
cally to mirror real-world organizational structures in indus-
trial or IoT environments. Local agents each monitor spe-

cific subsystems or network segments, processing local sen-
sor data and triggering immediate responses (e.g., block-
ing suspicious traffic). A global coordinator receives sum-
marized state information from all local agents, resolves
conflicting actions, and implements system-wide defensive
measures such as network isolation or forced restarts of
compromised nodes.

At the bottom tier, local agents operate on partial observa-
tions of their assigned subsystem, allowing them to perform
lightweight, real-time anomaly detection. At the top tier, the
global coordinator has access to high-level aggregated infor-
mation, enabling network-wide interventions (e.g., micro-
segmentation or mass patch deployment). This design is es-
pecially beneficial in large-scale systems where fully cen-
tralized control becomes computationally infeasible (Kulka-
rni et al. 2016), since it leverages local autonomy to reduce
communication overhead and accelerate response.

Conceptually, the hierarchical arrangement allows each
local agent to specialize in detecting and handling threats
within its domain, leading to faster and more accurate de-
tection at the subsystem level. Meanwhile, the global coor-
dinator maintains a holistic view of the entire CPS, enabling
better resource allocation and higher-level decision-making.
As a result, the local and global layers collectively mitigate
attacks more effectively than monolithic or purely decentral-
ized defenses.

Adversarially-Aware Training
A novel aspect of our method is the adversarial training loop,
wherein a simulated attacker agent with an evolving policy
is introduced. Unlike static or random threats, this attacker
adapts its strategies over time, attempting to compromise
the system by exploiting vulnerabilities, launching denial-
of-service attacks, or tampering with sensor data to degrade
process quality. This adversary is trained in tandem with
the defender agents, continually refining its attack strategies
based on defender actions. Conversely, defenders learn ro-
bust behaviors to counter more sophisticated threat patterns.
By framing the interaction as a repeated, partially observable
stochastic game, both attackers and defenders iteratively im-
prove their policies (Shapley 1953; Tambe 2011).

The attacker receives feedback about how many sub-
systems it successfully compromises or how often it re-
mains undetected; the defender side (local + global) receives
negative rewards for letting a subsystem remain compro-
mised and positive rewards for correct detection and rapid
patching. Over multiple episodes, these opposing objectives
shape a minimax-style equilibrium, leading to adversarial
resilience: the system must remain vigilant against an intel-
ligent attacker that changes tactics over time.

Reward Structures and Policy Optimization
The learning process relies on a hybrid reward function that
captures both local and global objectives. At the local level,
each agent is rewarded for correctly identifying or neutraliz-
ing threats and penalized for false alarms that interrupt legit-
imate operations. At the global level, the system receives re-
wards for maintaining uninterrupted operation, minimizing
resource overhead, and preserving overall safety. We adopt



a hierarchical multi-critic approach, where the local crit-
ics evaluate immediate detection performance, and a global
critic focuses on system-wide metrics (Lowe et al. 2017;
Yang et al. 2018).

For policy optimization, our implementation utilizes an
extension of Proximal Policy Optimization (PPO) adapted
for multi-agent environments (Schulman et al. 2017). Each
local agent’s policy is represented by a neural network, po-
tentially a graph neural network (GNN) or a transformer-
based model for enhanced processing of heterogeneous sen-
sor data (Veličković et al. 2018). The global coordinator
leverages aggregated embeddings from local agents, em-
ploying a separate neural network to learn the optimal co-
ordination policy. By periodically synchronizing policy up-
dates in a batch or round-robin fashion, the agents learn joint
strategies that balance local autonomy with global oversight.

Extensions and Implementation Improvements
Beyond the core hierarchy and adversarial loop, our method-
ology incorporates additional practical considerations:

• Partial Observability and Scalable Communication: Lo-
cal agents operate with partial observability, restrict-
ing their access to only subsystem-level data. This de-
sign minimizes communication overhead while preserv-
ing scalability. Aggregated messages to the global coor-
dinator are compressed to limit bandwidth usage.

• Formal Safety Checks: Certain high-risk actions (e.g.,
quarantining all subsystems) trigger domain-specific
safety checks to prevent catastrophic decisions, mirror-
ing real ICS safety protocols.

• Transferability and Generalization: The learned policies
can potentially transfer to other CPS domains (e.g., smart
grid, autonomous vehicles) if sensor features and reward
design are adapted accordingly.

These extensions position the hierarchical adversarially-
resilient MARL framework as a flexible, real-world ready
solution to emerging security threats in interconnected in-
dustrial environments.

Implementation and Experiment Design
Testbed Overview
To evaluate the proposed framework, we built a simulated
industrial IoT environment emulating a small-scale smart
factory. The environment includes multiple sensor nodes
(e.g., temperature, vibration, and pressure sensors), actua-
tors (e.g., valves and robotic arms), and an industrial con-
trol system using standard communication protocols such as
Modbus/TCP. Each subsystem is represented by a local de-
fender agent, while a single global coordinator oversees the
entire system.

Attack Scenarios
We consider a range of attack vectors, including:

• DoS Attacks: Overwhelming the control network with
traffic to degrade response time.

• Data Tampering: Manipulating sensor readings to trigger
incorrect actuator commands.

• Stealthy Advanced Persistent Threats (APTs): Gradual
infiltration that aims to remain undetected while collect-
ing critical intelligence or planting malicious scripts.

The adversary agent’s policy evolves based on its own
reward function, which incentivizes remaining undetected
while causing maximal disruption or data corruption. This
setup ensures that defenders are exposed to diverse, dynamic
threats during training and testing, fostering adversarial re-
silience.

Implementation Steps
The implementation of the proposed HAMARL framework
consists of several key steps, from environment initialization
to performance evaluation.

Environment Initialization To simulate a realistic indus-
trial IoT environment, the experimental setup models normal
industrial processes, sensor data flows, and baseline opera-
tional states. Given the constraints of real-world data avail-
ability, synthetic datasets are employed to emulate physical
processes, ensuring the simulation captures representative
system behaviors. Additionally, network simulation mod-
ules such as NS-3 are integrated where necessary to simulate
realistic packet-level interactions, particularly for assessing
network-based attacks and defensive interventions.

Local Agent Deployment Each local defender agent is
assigned to a specific subsystem within the CPS, where
it receives partial observations, including sensor readings
and local network traffic patterns. These agents operate au-
tonomously and are trained to make critical security deci-
sions, including raising intrusion alarms, initiating partial
quarantines, or escalating threats to the global coordinator.
This decentralized approach ensures real-time detection and
response capabilities while reducing the risk of single points
of failure.

Global Coordination A global coordinator oversees the
entire CPS security infrastructure, aggregating compressed
state/action proposals received from local agents. Unlike
purely decentralized models, the global coordinator is re-
sponsible for implementing high-level security policies that
extend beyond localized responses. These include network
micro-segmentation, where the system isolates compro-
mised nodes, and coordinated security actions, such as
initiating system-wide alerts or enforcing access restric-
tions based on detected threat patterns. The hierarchi-
cal control structure ensures that individual agents oper-
ate autonomously, while the coordinator enforces strategic,
system-wide defense mechanisms.

Adversarial Training Loop To improve system re-
silience, we introduce an adversarial training loop in which
an adaptive attacker agent continuously refines its strate-
gies to simulate sophisticated cyber threats. The attacker is
initialized with a baseline policy designed to compromise
vulnerable subsystems through targeted exploits, denial-
of-service (DoS) attacks, or stealthy infiltration strategies.



Training proceeds in an alternating fashion, where the at-
tacker iteratively refines its attack strategies, while defender
agents learn to adapt and counteract these threats. Rein-
forcement learning-based policy updates are conducted us-
ing Proximal Policy Optimization (PPO) (Lowe et al. 2017;
Schulman et al. 2017), ensuring robust adversarial adapta-
tion. This iterative learning process exposes the defense sys-
tem to realistic, evolving threats, ultimately enhancing its
ability to detect and mitigate novel attacks.

Reward Engineering To guide agent learning, a carefully
designed reward function is implemented at both local and
global levels, ensuring that agents are incentivized to en-
hance security while maintaining system stability. Local re-
wards are structured to balance detection accuracy, mini-
mized false positives, and subsystem uptime, preventing ex-
cessive intervention in benign scenarios. At the global level,
rewards are based on overall system resilience, ensuring that
security actions do not disrupt essential industrial processes
or overwhelm computational resources. The attacker agent,
in contrast, is rewarded for successful system compromises,
emphasizing stealth, system disruption, and the duration for
which subsystems remain compromised. This reward struc-
ture simulates realistic adversarial engagements, pushing de-
fenders to develop adaptive, high-precision detection and re-
sponse strategies.

Evaluation The trained framework is evaluated across
multiple dimensions to ensure its effectiveness in securing
CPS environments. The detection and response performance
is assessed by measuring detection latency, false alarm rates,
and the accuracy of security interventions. The framework’s
impact on system stability is analyzed by tracking opera-
tional continuity, throughput, and resource overhead (CPU
and bandwidth usage) to confirm that security mechanisms
do not introduce excessive computational burdens. Finally,
adaptive robustness is tested by exposing the trained sys-
tem to novel attack vectors not encountered during train-
ing, ensuring that the model generalizes effectively to un-
seen threats. These evaluation metrics provide a comprehen-
sive understanding of the framework’s performance and re-
silience in dynamic adversarial settings.

In each training cycle, agents generate experiences (state-
action-reward tuples), which are then aggregated into re-
play buffers for mini-batch updates. By restricting local
agents to subsystem-level data, we ensure scalability and
partial observability, while the global coordinator addresses
system-wide coherence. The adversary’s training ensures
that defenders develop resilient strategies capable of han-
dling adaptive threats.

Experimental Setup
Environment. We extend the open-source Cyber-Battle-
Sim toolkit to emulate a smart-factory industrial IoT line
withN=8 PLC-driven cells, 64 sensors (temperature, vibra-
tion, flow) and a Modbus/TCP control network.

State spaces. Each local defender observes ωti = ⟨sti,nti⟩
where sti ∈ R12 are normalised sensor features and
nti ∈ R5 are network-level statistics (packet loss, RTT,

SYN count, etc.). The global coordinator receives gt =
Concat(Pooli h

t
i), a 32-dimensional pooled embedding of

local agent hidden states.

Action spaces.
• Local defender ati ∈ {NOOP, ALERT, QUARANTINE,

PATCH}.
• Global coordinator atG∈{NOOP, ISOLATE-SEG, ROLL-

PATCH, RESET-NODE}.
• Attacker atA∈{SCAN, LATERAL, DOS, TAMPER}.

Reward design. Local rewards: ri = +1 (true-positive),
−0.2 (false-positive), −1 (miss). Global reward: R =
− 0.1 |(t)| − 0.01 DOWNTIME + 0.2 UPTIME.

Networks & training. Local policies use a 2-layer Graph
Attention Network (hidden 32, heads 4); the coordinator is
a 3-layer MLP (64-32-16). All critics share weights with the
actors except for an output head. Optimiser: Adam, 10−4;
λGAE = 0.95, γ = 0.99; PPO clip ϵ = 0.2; batch 32, 1 000
episodes.

Results and Analysis
Baseline Comparisons
We compare the proposed hierarchical adversarially-
resilient MARL framework against three baselines, each
representing a different approach to CPS security. The
Single-Agent RL baseline represents a centralized approach,
which, while effective in small-scale systems, lacks scal-
ability in distributed environments. The Non-Hierarchical
MARL baseline evaluates how decentralized approaches
fare without a coordinating agent, exposing issues of mis-
coordination and increased message overhead. The Rule-
Based Intrusion Detection system serves as a traditional
benchmark, demonstrating the limitations of static defense
mechanisms compared to adaptive learning models. These
baselines provide insight into the advantages of hierarchical
coordination and adversarial resilience.

Experimental results demonstrate that HAMARL signifi-
cantly outperforms baselines in terms of detection accuracy,
with a marked reduction in mean-time-to-detect (MTTD).
Notably, hierarchical coordination reduced false positives
by centralizing evidence gathered from distributed sen-
sors, while adversarial training improved detection rates for
newly introduced and sophisticated threat behaviors.

Attack Detection and Operational Continuity
Our experiments show that local agents trained under adver-
sarial conditions adapted quickly to stealthy APT attacks,
maintaining above 90% detection rates even when attackers
changed tactics mid-episode. The global coordinator played
a pivotal role in preventing cascading failures, for example,
by isolating compromised nodes or re-routing critical con-
trol signals before the entire production line could be halted.
As shown in Figure 2, detection rates improved dramati-
cally after approximately 200 training episodes, indicating
that defenders learn effective countermeasures once the ad-
versary escalates its strategies.



Figure 1: Total episode reward for defenders (averaged), the
global coordinator, and the attacker, across training episodes
in the adversarial environment. Higher defenders’ reward in-
dicates successful detection and minimized compromise du-
ration, whereas higher attacker reward indicates prolonged
or widespread subsystem compromise.

Resource overhead remained manageable, in part due to
parallelization strategies and localized decision-making, en-
suring real-time inference capacity on moderate hardware.
Furthermore, operators can tune the aggressiveness of lo-
cal quarantines versus global patches to balance false alarms
against critical subsystem uptime.

Figure 2: Detection rates over the course of training, illus-
trating the defenders’ improved ability to identify evolving
adversarial tactics.

Scalability Analysis

One primary challenge in multi-agent systems is scalabil-
ity, as increased numbers of agents can heighten communi-
cation overhead and slow convergence (Buşoniu, Babuška,
and Schutter 2010). In our simulations, adding new defender
agents to monitor additional subsystems led to a near-linear
increase in training time but only a modest increase in run-
time overhead, thanks to asynchronous training updates and
hierarchical credit assignment. The hierarchical structure not
only improves detection but also maintains tractable scaling
properties as CPS complexity grows.

Conclusion and Future Work
The proposed Hierarchical Adversarially-Resilient Multi-
Agent Reinforcement Learning framework presents a novel
and effective approach to securing large-scale Cyber-
Physical Systems against evolving cyber threats. By lever-
aging a hierarchical coordination mechanism, where local
agents specialize in real-time threat detection while a global
coordinator enforces system-wide security policies, our ap-
proach significantly enhances threat detection, response effi-
ciency, and system resilience. The integration of adversarial
training ensures that the framework generalizes well to pre-
viously unseen attack vectors, enabling defenders to proac-
tively adapt to AI-driven cyber threats rather than relying
on static security measures. Experimental evaluations on a
simulated industrial IoT testbed demonstrate that HAMARL
achieves higher detection accuracy, reduced response time,
and greater operational continuity compared to traditional
non-hierarchical MARL and rule-based methods.

From an industrial perspective, deploying such a system
could significantly mitigate cybersecurity risks in critical in-
frastructures where downtime or data compromise can re-
sult in severe economic and safety consequences. The study
highlights the growing necessity for AI-driven, continu-
ously adaptive defense mechanisms in modern CPS environ-
ments. Unlike conventional static rule-based intrusion de-
tection systems, HAMARL dynamically refines its defense
strategies in response to evolving cyber threats, ensuring ro-
bust security even in adversarial environments.

Despite the promising outcomes, several challenges and
limitations remain. First, computational and data require-
ments for training multiple reinforcement learning agents,
particularly in resource-constrained CPS environments,
could be prohibitive. Optimizing training efficiency while
maintaining robust defenses is an area for further explo-
ration. Second, hierarchical MARL introduces additional
complexity in designing reward structures and coordinating
local-global policies, which may require domain-specific
tuning to ensure effective real-world deployment. Finally,
while our simulation-based evaluation demonstrates the
framework’s scalability, real-world deployment would ne-
cessitate rigorous validation, regulatory compliance (e.g.,
IEC 62443 for industrial automation), and safety testing be-
fore practical adoption.

To further advance AI-driven security for CPS, several av-
enues of future research should be explored. One promis-
ing direction is transfer learning, where policies trained
in one CPS domain, such as a smart factory, could be
adapted to other critical infrastructures, such as smart grids
or autonomous vehicle networks. Another important area is
the integration of Explainable AI to provide interpretabil-
ity and transparency in defense mechanisms, ensuring that
security decisions can be understood by human operators
and auditors. Additionally, formal verification techniques
could be incorporated to ensure that RL-driven security
policies do not inadvertently disrupt safety-critical opera-
tions. Lastly, extending the adversarial training framework
to multi-attacker scenarios would offer valuable insights into
how defenders can adapt to adversaries that collaborate or
compete against each other, introducing new layers of com-



Table 1: Detection performance (mean ±95% CI).

Method MTTD↓ F1↑ False Alarm↓
Rule-Based IDS 87.4±6.1 0.42±0.03 17.6%
Non-Hier. MARL 41.8±4.5 0.71±0.02 11.3%
HAMARL (ours) 18.3±2.7 0.88±0.01 6.1%

Table 2: Training wall-clock time vs. number of defender
agents (Intel Xeon 6230, RTX A6000).

# Agents 4 8 12

Non-Hier. MARL (h) 4.1 9.5 18.7
HAMARL (h) 4.4 10.3 20.9

plexity in CPS security.
As CPS networks continue to evolve and expand in scale

and complexity, ensuring their security remains a pressing
research and industrial priority. The insights from this work
contribute to the growing body of knowledge in AI-driven
cybersecurity, paving the way for practical, scalable, and
self-adaptive defense mechanisms. Future research should
focus on refining hierarchical learning structures, enhancing
real-world applicability, and exploring cross-domain gener-
alization, ultimately striving toward a new generation of in-
telligent, resilient, and adaptive security solutions for critical
infrastructures.

Theorem 0.3: Multi-Agent Convergence Proof
Proof. We expand the sketch proof as follows:

Step 1: Monotonic Policy Improvement per Agent: For
agent i, the PPO update aims to solve

max
θi

E
[
min(ρt(θi)Ât, clip{ρt(θi), 1± ε}Ât)

]
,

where ρt(θi) =
πθi

(ai,t|ωi,t)

π
θold
i

(ai,t|ωi,t)
and Ât is the GAE advantage.

By bounding the ratio within [1 − ε, 1 + ε], we ensure that
the update does not drastically degrade performance, estab-
lishing local monotonic improvement in agent i’s objective.

Step 2: Joint Updates in a Markov Game: While agent i
updates θi, the other agents hold their parameters θ−i, ϕ, ψ
fixed. This yields a best response step for agent i. Repeat-
ing over all agents in a round-robin or simultaneous fashion
(depending on the training scheme) can be viewed as ap-
proximate gradient ascent in the multi-agent reward space
(Zhang, Yang, and Basar 2021).

Step 3: Stochastic Approximation and Boundedness: As-
sume ri(s,a) ∈ [rmin, rmax], ∥∇θiLi∥ ≤ M , and that each
agent’s policy covers its action space with a minimum ex-
ploration probability δ > 0. By standard results in stochastic
approximation, the parameter updates converge to a station-
ary point ∇θiLi(θ

∗) = 0 for each i, provided the step sizes
αk → 0 over iterations k.

Step 4: Local Nash Equilibrium: A stationary point in
multi-agent policy space implies no agent can unilaterally

improve its expected return given the other agents’ policies
remain fixed. Thus, (θ∗i , ϕ

∗, ψ∗) is a local Nash equilibrium.
Global (or unique) equilibrium is not guaranteed without ad-
ditional assumptions (convex-concavity, zero-sum structure,
etc.).

Proof of Theorem 0.5
Proof. Let c > 0 be the defenders’ penalty per compro-
mised subsystem, and ra > 0 be the attacker’s reward per
compromised subsystem. Suppose the attacker attempts to
compromise all N subsystems. Each local defender i plus
the global coordinator can respond with quarantines and
patches to reduce

∑N
i=1 1{subsystem i compromised}. As

θi, ϕ converge to best-response policies, defenders effec-
tively minimize the time that any single subsystem remains
compromised; thus, the attacker cannot indefinitely maintain
a complete state of compromise without incurring immedi-
ate quarantines or system patches.

Quantitatively, in each step t, the expected net
payoff to the attacker from compromise is ra ×
(number of compromised) minus the defenders’ best re-
sponses. Because the defenders incur cost c per compro-
mised subsystem, their equilibrium strategy invests suffi-
cient actions (quarantines, patches) to reduce total compro-
mise. Provided c is large enough relative to ra, a subset of
subsystems remains un-compromised on average, ensuring
ϱ∗ < 1. This argument can be formalized via potential func-
tion arguments or Markov chain equilibrium analysis (see
(Shoham and Leyton-Brown 2008) for a multi-agent poten-
tial game perspective). Therefore, at the joint equilibrium,
the fraction of compromised subsystems is less than 1, com-
pleting the proof.
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Buşoniu, L.; Babuška, R.; and Schutter, B. D. 2010. Multi-
agent reinforcement learning: An overview. In Innovations
in Multi-Agent Systems and Applications – 1. Springer.
Conti, M.; Dehghantanha, A.; Franke, K.; and Watson, S.
2018. Internet of Things security and forensics: Challenges
and opportunities. Future Generation Computer Systems.
Goodfellow, I.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In International
Conference on Learning Representations (ICLR).
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical Deep Reinforcement Learning:



Integrating Temporal Abstraction and Intrinsic Motivation.
In Advances in Neural Information Processing Systems 29
(NIPS).
Lee, E. A. 2008. Cyber physical systems: Design challenges.
In 11th IEEE International Symposium on Object Oriented
Real-Time Distributed Computing.
Louati, F.; Ktata, F. B.; and Amous, I. 2024. Big-IDS: a de-
centralized multi agent reinforcement learning approach for
distributed intrusion detection in big data networks. Cluster
Computing, 27(5): 6823–6841.
Lowe, R.; Wu, Y. I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.;
and Mordatch, I. 2017. Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments. In Advances in
Neural Information Processing Systems (NeurIPS).
Matignon, L.; Laurent, G. J.; and Fort-Piat, N. L. 2012. In-
dependent Reinforcement Learners in Cooperative Markov
Games: a Survey regarding Coordination Problems. The
Knowledge Engineering Review.
Rashid, T.; Samvelyan, M.; De Witt, C. S.; Farquhar, G.;
Foerster, J.; and Whiteson, S. 2020. Monotonic value func-
tion factorisation for deep multi-agent reinforcement learn-
ing. Journal of Machine Learning Research, 21(178): 1–51.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2016. High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation. In International Conference
on Learning Representations (ICLR).
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv:1707.06347.
Shapley, L. 1953. Stochastic Games. Proceedings of the
National Academy of Sciences.
Shoham, Y.; and Leyton-Brown, K. 2008. Multiagent sys-
tems: Algorithmic, game-theoretic, and logical foundations.
Cambridge University Press.
Standen, M.; Kim, J.; and Szabo, C. 2025. Adversarial Ma-
chine Learning Attacks and Defences in Multi-Agent Rein-
forcement Learning. ACM Computing Surveys, 57(5): 1–35.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT Press, 2nd edition.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
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