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Abstract 

 Sign language recognition is an essential tool that facilitates 
communication for those with hearing and speech disabilities.  
Conventional recognition techniques frequently encounter 
challenges in real-time performance, resilience, and accuracy 
owing to fluctuations in hand positions, backdrops, and lighting 
conditions.  This paper presents a YOLOv11-based deep 
learning system for recognising American Sign Language 
(ASL), concentrating on both alphabetic and transactional hand 
motions to mitigate existing constraints.  The model is 
engineered to function in real-time while ensuring high precision 
and resilience across varied contexts. The methodology adheres 
to a systematic pipeline, commencing with dataset gathering and 
pre-processing, which include image augmentation, 
normalisation, and scaling to guarantee model generalisation.  
The YOLOv11 architecture utilises an improved backbone, 
neck, and detecting head for effective feature extraction and 
classification.  Training is enhanced by the utilisation of the 
AdamW optimiser, a meticulously adjusted learning rate, and a 
loss function that integrates box loss, classification loss, and 
distribution focal loss (DFL).  Performance is assessed using 
precision, recall, mean Average Precision (mAP), and inference 
rate to guarantee the model's accuracy and efficiency.  
Experimental findings indicate that the suggested model attains 
95.4% precision, 94.8% recall, and 98.1% mean Average 
Precision (mAP), markedly surpassing conventional methods.  
The amalgamation of GRAD-CAM with occlusion sensitivity 
significantly improves model interpretability.  This research 
offers a robust and scalable approach for real-time sign language 
detection, facilitating enhanced accessibility in communication 
technologies, assistive devices, and interactive systems. 

Keywords: Sign Language Recognition; YOLO v.11; Hand 
Gesture Detection; Deep Learning; Gesture Classification. 

1 INTRODUCTION 
Those with hearing and speech difficulties use sign 

languages to express thoughts, feelings, and information 
through manual gestures, facial expressions, and bodily 
movements. Sign language unites deaf and hearing people 
worldwide, encouraging inclusivity and understanding in 
social, educational, and professional settings [1], [2]. Sign 
languages have developed separately in different 

countries, resulting in unique languages like ASL, BSL, 
ISL, and ArSL. Despite their differences, all sign 
languages improve communication for hearing and 
speech-impaired people [3], [4]. 

Communication accessibility requires sign language 
motion classification. Precision and effectiveness in sign 
language identification can help create applications in 
education, healthcare, customer service, and public 
services. These advancements illuminate gesture-based 
communication, which may improve human-computer 
interaction, robotics, and augmented reality. Resilient 
classification techniques enable real-time translation 
systems for sign language users and non-users without 
interpreters [5], [6]. 

Classification categorizes data by traits and patterns. 
Sign language recognition uses classification to match 
hand forms, movements, and gestures to letters, words, 
and sentences. Figure 1 shows that classification is most 
commonly used in real-time translation, sign language 
education, hearing aids, and customer service and 
healthcare communication interfaces [7]. 

 
Figure 1:    Most common usage of recent classification 

models. 
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Recent deep learning advances have changed sign 
language dataset classification. Advanced models that can 
detect subtle spatial and temporal patterns in gesture 
images and videos have replaced manual feature design 
and statistical frameworks in machine learning. CNNs 
efficiently extract spatial features from images, while 
LSTM networks efficiently capture temporal relationships 
in sequential data. Transformer-based architectures using 
self-attention approaches are becoming popular for 
handling long-range dependencies [8], [9]. 

YOLO (You Only Look Once) models are popular 
in object identification, particularly sign language 
recognition. YOLO v.11 improves processing speed and 
accuracy, making it a viable real-time sign language 
identification solution. YOLO models partition images 
into grids and forecast bounding boxes and class 
probabilities using a single neural network. This improved 
technique reduces computational load, making YOLO 
models suitable for edge devices and mobile apps. Hybrid 
CNN-attention mechanism-recurrent layer models can 
capture static and dynamic hand motions [10], [11]. 

1.1 Related Works 
Sign language recognition has experienced 

considerable progress over the years, mostly due to the 
incorporation of deep learning methodologies. This sub-
section examines the current literature, emphasizing 
significant contributions, techniques, and issues 
encountered in diverse investigations. Sign language 
recognition systems can be classified into vision-based 
and sensor-based approaches. Vision-based systems, 
preferred for their simplicity and cost-efficiency, employ 
computer vision algorithms to interpret hand movements, 
whereas sensor-based methods depend on wearable 
equipment such as gloves integrated with sensors. 

Aksoy et al. [12] investigated the identification of 
Turkish Sign Language (TSL) via CNN-based 
architectures. Their research utilised a bespoke dataset 
including 10,223 photos depicting 29 letters. The 
researchers utilised multiple models, such as CapsNet, 
AlexNet, ResNet-50, and TSLNet. CapsNet and TSLNet 
attained peak accuracies of 99.7% and 99.6%, 
respectively. The research illustrated the efficacy of data 
augmentation and picture preprocessing methods such as 
filtering and segmentation to enhance recognition 
accuracy. Haque et al. [9] utilised CNNs for Bangladeshi 
Sign Language (BdSL) identification, with 99% accuracy 
in training and 93% in testing. Both studies highlighted 
dataset customization and preprocessing as essential 
elements for performance improvement. 

Buttar et al. [13] and Baihan et al. [8] utilised hybrid 
deep learning methodologies that integrate CNNs with 
LSTM layers. Buttar et al. created a model employing 
LSTM and YOLOv6 for American Sign Language (ASL) 

recognition, attaining 96% accuracy for static signs and 
92% for dynamic signs. Baihan et al. presented CNNSa-
LSTM via a hybrid optimisation method, attaining an 
accuracy of 98.7%. The primary difference between these 
models is Baihan et al.'s implementation of an innovative 
hybrid optimizer that integrates HOA and PFA for feature 
extraction optimisation. 

Wadhawan and Kumar [2] and Zhang et al. [14] 
investigated static sign recognition employing CNNs. 
Wadhawan's CNN model for Indian Sign Language (ISL) 
attained 99.90% accuracy using greyscale photos, whilst 
Zhang's Dual-Path Background Erasure Convolutional 
Neural Network (DPCNN) achieved 99.52% accuracy by 
eliminating background characteristics to improve 
recognition precision. Both methodologies underscored 
the importance of feature extraction techniques; however, 
Zhang's approach presented a distinctive dual-path 
architecture for enhanced background management. 

Kyaw et al. [15] concentrated on the recognition of 
Myanmar Sign Language (MSL) employing CNN 
models. They attained 99% accuracy by integrating 
movies recorded under different lighting conditions, 
highlighting the need of varied training datasets for 
enhanced model generalization. Alyami et al. [16] utilised 
transformer-based models for Arabic Sign Language 
(ArSL), attaining an accuracy of 99.74% and highlighting 
the significance of non-manual face aspects in gesture 
detection. 

Likhar et al. [17] attained elevated recognition 
accuracy for Indian Sign Language (ISL) by the utilisation 
of RGB-D data with convolutional neural networks 
(CNNs), achieving 98.81% and 99.08% accuracy for 
static and dynamic motions, respectively. Das et al. [18] 
introduced a CNN-BiLSTM model for word-level 
recognition using key-frame extraction, attaining an 
accuracy of 87.67%. The comparison reveals that Likhar's 
model outperformed in both static and dynamic 
recognition tests, whereas Das's model prioritized 
efficiency in processing time-series data. 

Vetagiri et al. [19] examined CNN-BiLSTM hybrids 
for sequential classification tasks, offering insights 
pertinent to sign language recognition. While their 
research primarily focused on detecting sexism, the 
approaches described could be used to gesture-based 
classification problems because of their efficacy in 
capturing temporal relationships. 

The analyzed studies emphasize the efficacy of 
CNNs, LSTMs, and hybrid models in sign language 
recognition. Models utilising spatial and temporal 
characteristics, such as CNNSa-LSTM and hybrid 
YOLOv6-LSTM methodologies, have demonstrated 
encouraging outcomes across multiple languages. The 



implementation of background erasure techniques and 
transformer-based models significantly improves 
performance, particularly in real-time applications. This 
study seeks to enhance existing methodologies by 
classifying a bespoke dataset for sign language 
recognition utilising YOLO v.11, integrating both static 
and dynamic gestures to augment classification accuracy 
and broaden the applicability of sign language recognition 
in more practical and interactive contexts. 

Table 1 provides a clear comparison of the 
techniques, languages, and accuracies achieved by each 
study, offering a concise overview of the field's 
advancements and areas of focus. 

2 MATERIAL & METHODS 
Figure 2 delineates the approach of a hand 

gesture recognition system utilising YOLOv11, detailing 
the sequential procedure from data collection to final 
prediction.  The method commences with the input stage, 
during which hand gesture images are gathered.  During 
the data pre-processing phase, these images are subjected 
to labelling, partitioning, and augmentation to enhance 
model generalization.  Upon preparation, the data is 
transmitted through the YOLOv11 layers, which include 
a input layer for feature extraction, a backbone layer for 
advanced feature analysis, a neck layer for enhancing 
feature maps, and a detection head for predicting 
bounding boxes and class labels.  The ReLU activation 

function is utilised to introduce non-linearity, hence 
improving learning efficiency. 

Subsequently, the model training phase enhances 
detection accuracy through the integration of a loss 
function, an optimizer, modifications to the learning rate, 
and mAP (mean average precision) for assessment.  To 
enhance model transparency, explainability techniques 
like GRAD-CAM and occlusion sensitivity are employed, 
facilitating the visualization of significant elements that 
affect predictions.  The output stage provides the final 
prediction, including bounding boxes and class labels, to 
ensure precise hand gesture identification.  This 
systematic approach combines sophisticated deep 
learning methods with explanatory aids, rendering the 
system both resilient and comprehensible. 

The methodology section details the dataset 
acquisition, preprocessing techniques, and the 
architecture of the YOLOv11 model, including the 
training process and explainability techniques. The results 
and discussion section presents the experimental 
outcomes, comparing the model’s performance with state-
of-the-art techniques and analyzing its superiority. 
Subsequently, the conclusion and future work section 
summarizes the key contributions of the study while 
outlining potential enhancements such as multi-language 
recognition, mobile deployment, and integration with 
other modalities. The paper concludes with references, 
ensuring a well-documented and academically rigorous 
study. 

Table 1:    Comparative Summary of Related Research. 
Ref. Language Model Key Techniques Accuracy Dataset Size Hardware 

Used 

[12] Turkish Sign 
Language CapsNet/TSLNet Data Augmentation, CNN 99.7% - 

99.6% 10,223 images GPU 

[13] American Sign 
Language 

LSTM+YOLOv6 Skeleton-based Features 96% - 92% Custom dataset GPU 

[14] DPCNN Background Erasure 99.52% ASL Finger 
Spelling CPU 

[2] 
Indian Sign 
Language 

CNN 50 CNN Models Tested 99.90% 35,000 images GPU 

[17] CNN RGB-D Data 98.81% - 
99.08% RGB-D dataset GPU 

[18] CNN-BiLSTM Key-frame Extraction 87.67% Custom dataset GPU 

[9] Bangladeshi Sign 
Language CNN DenseNet201+ResNet50-

V2 99% - 93% 992 images CPU 

[15] Myanmar Sign 
Language CNN Diverse Lighting 

Conditions 99% Video dataset GPU 

[16] Arabic Sign 
Language 

Transformer-
based MediaPipe Keypoints 99.74% KArSL-100 GPU 

[8] Multiple 
Languages CNNSa-LSTM HOA+PFA Optimizer 98.7% Multiple datasets GPU 

[19] 
Text-based 

Classification 
Task 

CNN-BiLSTM Temporal Dependency 
Analysis 92% Multi Hate GPU 



 
Figure 2.    Proposed system architecture. 

2.1 Dataset Description 
This study used The American Sign Language 

(ASL) dataset which was sourced from Roboflow 
Universe/duyguj/American-sign-language-letters. All 
images, as in Figure 3, in the dataset were pre-labeled, 
ensuring accurate training data. Additionally, data 
augmentation techniques were applied within Roboflow 
to increase the variability of the dataset, improving the 
model’s generalization. Techniques such as flipping, 
rotation, and brightness adjustments were employed. This 
dataset contains a total of 1224 images, which are split 
into three sets 82% (1008 images) for Train set, 12% (144 
images) for Validation set, and 6% (72 images) for Test 
set. 

 
Figure 3.    Dataset samples 

2.2 Dataset Pre-Processing 
Preprocessing plays a crucial role in enhancing 

the accuracy and reliability of the YOLO11 model for 
real-time sign language detection. This study incorporated 
various preprocessing techniques to ensure that the inputs 

for training and inference are of high quality. First, we 
applied Auto-Orientation to ensure that all images were 
properly aligned, preventing any misinterpretation caused 
by rotation inconsistencies.  

All input images were resized to 640×640 pixels, 
the requisite input dimension for YOLO11, to ensure 
consistency and enhance performance. To improve model 
generalization, several data augmentation techniques 
were utilized on the dataset. The images underwent 
rotations ranging from -15° to +15° to represent different 
hand positions, and brightness levels were modified 
between -10% and +10% to reflect various lighting 
scenarios. Furthermore, a 2px Gaussian blur was applied 
to create motion blur and replicate real-world camera 
irregularities. To improve model stability during training, 
we normalize pixel values to a range between 0 and 1. For 
video preprocessing, we extracted frames in real-time to 
facilitate sequential gesture recognition.  

We also employed edge detection and 
background subtraction methods to enhance the clarity of 
hand gestures. Finally, we integrated OpenCV to 
preprocess the video frames before sending them to the 
YOLO11 model. These preprocessing techniques 
guaranteed that the YOLO11 model was provided with 
high-quality, well-augmented, and standardized inputs, 
enhancing its ability to recognize sign language gestures 
across different conditions. 

2.3 YOLO11 
YOLO11 enhances the developments of its 

predecessors (YOLO9, YOLO10) by including an 
upgraded architecture, improved feature extraction, and 
refined training methodologies [20]. The model is capable 
of managing various activities across diverse domains and 
has strong scalability, accommodating both mobile CPUs 



and robust GPUs [21], [22]. YOLO11 can be obtained in 
five different sizes, with parameter counts varying from 
2.6 million to 56.9 million, and attains MAP scores 
ranging from 39.5 to 54.7 on the COCO dataset, used for 
initial pre-training [23], [24].  This study used the compact 
version of YOLO11 for the efficient real-time detection of 
hand signs.  In addition to its powerful real-time object 
identification capabilities, this model performs in a variety 
of other tasks, including classification, instance 
segmentation, pose estimation, semantic segmentation, 
and object detection. Recognizing hand gestures was a 
breeze using the compact version of YOLO11 for object 
identification in this work. It effortlessly handled real-
time sign recognition. 

It was required to refine the YOLOv11 model 
using the ASL dataset in order for it to learn object 
detection tailored specifically for sign language. The 
training process applied dataset augmentation via 
Roboflow, which helped the model become more resilient 
by improving the dataset with different transformations. 
The YOLOv11 model was first trained on the augmented 
dataset and then validated with a separate set of data to 
monitor the learning process and avoid overfitting. After 
training, the model was tested on a dedicated test set 
which showcased its competency in predicting unseen 
data, successfully aiding in recognizing sign language 
gestures. 

The YOLOv11 model architecture is designed to 
effectively identify American Sign Language letters with 
a tripartite structure consisting of the backbone, neck, and 
head.  The backbone acts as the feature extractor, using 
convolutional layers with residual connections to collect 
low-level and high-level image characteristics. It 
systematically reduces the image's dimensions while 
augmenting the depth of feature maps to retrieve intricate 
details. The neck component links the backbone to the 
detecting head, using SPPF (Spatial Pyramid Pooling 
Fast) layers to consolidate multi-scale data and improve 
spatial information. Furthermore, the C2PSA (Cross-
Stage Partial Spatial Attention) blocks enhance attention 
processes, enabling the model to concentrate on pertinent 
areas of hand motions.  The detection head has three 
output layers that forecast item bounding boxes, class 
probabilities, and confidence ratings at various scales.  
This multi-scale detection method enhances the model's 
capacity to identify gestures of diverse sizes and 
orientations.  The design facilitates Automatic Mixed 
Precision (AMP), enhancing training speed without 
sacrificing precision.  Residual connections and attention 
mechanisms assist in reducing information loss during 
feature extraction.  YOLOv11's design effectively 
balances speed, accuracy, and computing economy, 
making it highly suitable for sign language identification 
applications. 

Our training procedure was set up with 
comparable hyperparameters: an optimizer called 

AdamW with the following settings: a learning rate of 
0.000333, momentum=0.9, parameter groups 81 weight 
(decay=0.0), 88 weight (decay=0.0005), 87 bias 
(decay=0.0), 16 batches, and 10 epochs in total. All 
training was performed only on Kaggle, implementing its 
high-performance computing infrastructure to 
accommodate the time-consuming nature of these 
challenges. A warmup phase of 3 epochs is applied with 
lower learning rates to prevent sudden weight updates and 
stabilize training. The overlapping mask prediction 
technique is applied with a mask ratio of 4 to improve 
segmentation quality. The dropout rate is set to 0.0 to 
maintain consistent feature extraction. The model uses 
Rectified Linear Units (ReLU) as activation functions in 
convolutional layers. Batch normalization is applied after 
each convolutional layer to stabilize learning. This 
combination of layers and parameters allows the model to 
achieve high detection accuracy with efficient 
computation. The loss function combines box loss, 
classification loss, and distribution focal loss (DFL) to 
ensure accurate localization and classification of hand 
gestures. Table 2 presents the model layers and 
parameters it consists of 319 layers with 2,594,910 
parameters and 6.5 GFLOPs (Giga Floating Point 
Operations). 

Table 2:  Model layers and parameters. 
Layer Parameters Description 

Conv Layer 
1 464 3x3 Convolution with 16 

filters (stride 2) 

Conv Layer 
2 4672 3x3 Convolution with 32 

filters (stride 2) 

C3k2 Block 
1 6640 Cross-Stage Partial Module 

with 64 filters 

SPPF Layer 164608 Spatial Pyramid Pooling 
layer 

C2PSA 249728 Cross-Stage Partial with 
Spatial Attention 

Detection 
Head 435742 Final Detection layers with 

3 scale outputs 

For explainability, the model generates Grad-
CAM (Gradient-weighted Class Activation Mapping) 
visualizations to highlight the most influential regions in 
an image for each prediction. The Grad-CAM maps help 
interpret the model's decision-making process by showing 
which parts of the hand gesture contribute most to the 
classification result. Additionally, bounding boxes with 
confidence scores are plotted on the images to visualize 
the model's predictions. The model uses Automatic Mixed 
Precision (AMP) to speed up training while maintaining 
numerical stability. These training and explainability 
techniques provide insights into the model's decision-
making process and improve its performance for sign 
language detection tasks. 



2.4 Performance Metrics 
In the improved American Sign Language (ASL) 

recognition model, the performance of the system is rated 
with standard measures commonly applied in object 
detection and classification problem. How accurate the 
model is to recognize and classify hand signs is measured 
by a combination of Intersection over Union (IoU), true 
positive (TP), false positive (FP), false negative (FN), 
precision, recall, mean Average Precision (mAP), and 
inference rate [25], [26]. 

The value of IoU is significant in measuring the 
overlap between the predicted bounding box and the 
ground truth bounding box. For this study, a threshold of 
0.5 is employed for IoU, meaning that a prediction is 
considered correct if the overlap between the two boxes is 
greater than 50%. In this way, good localizations of the 
hand signs are only considered successful detection [27]. 

True positive (TP) occurs when the predicted 
bounding box correctly identifies the hand sign within the 
true bounding box. False positive (FP) occurs when the 
model makes a prediction in a bounding box where there 
is no hand sign, which gives rise to false detections. False 
negative (FN) occurs when the model fails to make a 
prediction despite having a hand sign within the true 
bounding box [28]. In this study, true negative (TN) is not 
considered since the dataset lacks any images except for 
hand signs. 

Dataset split, which is 82% training, 12% 
validation, and 6% testing, gives a good evaluation of the 
model's ability to generalize to new data. We use the 
Keras and Torch framework to implement it. It is 
necessary to use parallel processing while training deep 
neural networks. Since this was the case, we used the 
open-source software Python 3.0 and Kaggle to train and 
evaluate the classifiers. Additionally, we utilized NVIDIA 
TESLA P100 graphics processing units (GPUs) and 16 
GB of RAM. 

2.4.1 Precision 
This metric focuses on true positives and false 

positives. High precision is achieved when false positives 
are low. It is calculated as [29]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

2.4.2 Sensitivity (Recall) 
This metric highlights true positive and false 

negatives. High sensitivity is achieved when false 
negatives are low. It is calculated as [30]: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

=
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

2.4.3 Mean Average Precision (mAP) 
Mean Average Precision (mAP) is another 

popular object detection measure that calculates the 
average precision over recall levels from 0 to 1. It provides 
a single numeric value representing the overall detection 
accuracy of the model for all hand signs [29]: 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 

Where, 𝑁 is the number of classes and 𝐴𝑃𝑖 is the 
average precision for each class. 

Inference rate, in frames per second (fps) or 
milliseconds (ms) per frame, is another essential metric 
for real-time systems. Higher fps indicates that the model 
can process more images per second, which is very 
important for real-time sign language recognition. 

Through these performance metrics, the 
accuracy, efficiency, and responsiveness of the ASL 
detection model are thoroughly tested to validate its 
reliability in real-time applications. 

3 RESULT & DISCUSSION 
The results of the YOLO11 model trained for 

American Sign Language (ASL) letter detection can be 
said to have been promising over the span of 100 epochs 
within the set limits. In Figure 4. The probability of 
correct detection is shown in the bounding box. The 
model’s performance was evaluated with distinct 
parameters as shown in Figure 5. The YOLO11 model 
achieved 95.4% for the precision, 94.8% for the recall, 
and 98.1% for mAP.   

Also, Throughout the training, the loss metrics all 
improved steadily over time. The box loss decreases from 
approximately 0.35 to nearly 0.12, reflecting better 
accuracy in the bounding box predictions of the model. 
The cls loss decreases from 1.6 to nearly 0.4, reflecting 
significant improvement in the model's ability to properly 
classify objects in the predicted boxes. The dfl loss also 
decreases from 1.05 to approximately 0.9, reflecting better 
localization performance. Next Throughout the 
validation, box loss starts at around 1.5 and decreases to 
nearly 0.2, cls loss falls drastically from around 5 to nearly 
1, whereas dfl loss falls from 2.5 to around 0.5, showing 
how well the model can generalize on new unseen data. 
Even though the overall performance is promising, some 
misclassifications to detect were evident particularly for 
characters whose hand shapes are the same as shown in 
the confusion matrix in Figure 6. 

 



 
Figure 4:    The predictions of the model and its 

confidence score on different signs. 

 
Figure 5.    The training validation precision, recall, 
mAP50, mAP50-90 and different types of loss of the 

Proposed model
 

 
Figure 6.    Confusion matrix of the model results. 

The experimental results demonstrate the 
superiority of the proposed YOLOv11-based sign 
language recognition system compared to traditional 
approaches. The model achieved 95.4% precision, 94.8% 
recall, and 98.1% mAP, highlighting its high accuracy in 
detecting and classifying both alphabetical and 
transactional hand gestures. These results outperform 
conventional CNN-based models and previous YOLO 

versions, which often suffer from misclassifications due 
to variations in background, lighting, and hand 
orientations. The optimized YOLOv11 architecture, 
featuring an enhanced backbone, neck, and detection 
head, enables precise feature extraction and classification, 
ensuring reliable predictions in real-time scenarios. 
Furthermore, the incorporation of explainability 
techniques such as GRAD-CAM and occlusion sensitivity 



allows for deeper insights into the model’s decision-
making process, reinforcing its trustworthiness and 
interpretability in real-world applications. 

The proposed system offers several advantages 
over existing sign language recognition models. Firstly, it 
ensures real-time performance with minimal 
computational overhead, making it suitable for embedded 
systems, mobile devices, and edge computing 
applications. Secondly, the data augmentation and 
preprocessing techniques, including normalization, 
resizing, and background filtering, enhance model 
robustness, ensuring consistent performance across 
different lighting conditions and hand positions. 
Additionally, the integration of an adaptive loss function 
and an optimized training strategy using the AdamW 
optimizer improves convergence speed and classification 
accuracy. The system’s flexibility allows for scalability, 
making it applicable to a wide range of sign languages 
beyond ASL. With these strengths, the proposed model 
has the potential to enhance communication accessibility, 
benefiting individuals with hearing impairments and 
paving the way for further advancements in assistive 
technologies and human-computer interaction. 

4 CONCLUSION & FUTURE WORK 
This study introduced a YOLOv11-based deep 

learning system for real-time recognition of American 
Sign Language (ASL), emphasizing both alphabetic and 
transactional hand motions.  The system exhibited 
exceptional accuracy and robustness across many 
environmental circumstances by utilising a meticulously 
selected dataset, sophisticated data augmentation 
methods, and an optimised YOLOv11 architecture.  The 
model attained 95.4% precision, 94.8% recall, and 98.1% 
mean Average Precision (mAP), exceeding conventional 
techniques in sign language identification.  The 
incorporation of GRAD-CAM and occlusion sensitivity 
elucidated the model's decision-making process, hence 
improving interpretability and dependability for practical 
applications.  The results underscore the effectiveness and 
scalability of the suggested system, rendering it a feasible 
solution for assistive technologies, educational 
instruments, and human-computer interaction interfaces. 

 Notwithstanding its commendable performance, 
there remain aspects for enhancement that subsequent 
efforts should tackle.  Initially, augmenting the dataset to 
encompass a broader range of sign languages and dynamic 
gestures would enhance generalization across various 
linguistic situations.  Furthermore, integrating 
transformer-based models with YOLOv11 may improve 
feature extraction for intricate gesture sequences.  
Subsequent research should concentrate on creating 
lightweight iterations of the model tailored for 
implementation on edge devices and mobile platforms, 
hence enhancing the accessibility of sign language 

recognition.  Furthermore, the use of multi-modal data, 
including facial expressions and hand gestures, may 
enhance recognition precision in intricate real-world 
situations.  Ultimately, real-time implementation and user 
evaluations must be performed to evaluate the model's 
usability and efficacy in interactive communication 
systems. 

 By tackling these challenges, forthcoming 
progress in deep learning and computer vision will further 
improve the accessibility and efficacy of sign language 
recognition systems, closing the communication divide 
between hearing and non-hearing individuals across 
diverse societal and technological spheres. 
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