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Abstract

Purpose: This study aims to reduce lung disease mortality
by developing an automatic screening system that analyzes
X-ray images and utilizes distributed image data storage, cre-
ating a collaborative platform among Indonesian hospitals
while ensuring patient data privacy. Methods: Using Fed-
erated Learning, a decentralized machine learning approach,
hospitals build local models with their data, which are aggre-
gated into a global model on a central server without com-
promising confidentiality. An innovative system for archiv-
ing medical images is also introduced, which anonymizes, se-
cures, and curates data for training marchine learning based
diagnosis systems. Results: The Federated Learning imple-
mentation resulted in a privacy preserved detection model
that aggregates models from multiple hospitals while keep-
ing patient data secure and remains in their silos. The archiv-
ing system successfully stores anonymized medical images
and created a valuable dataset for CAD development. Con-
clusion: This work advances machine learning in healthcare,
prioritizing patient privacy while enhancing X-ray analysis
and collaborative model development. By addressing techni-
cal and ethical challenges, this framework sets a new standard
for responsible AI in healthcare, with potential for application
in other imaging modalities and diseases, aiming to revolu-
tionize medical diagnostics.

Introduction
Indonesia, a significant nation in Southeast Asia, holds no-
table demographic and geographic prominence. It ranks
fourth globally in population and fifth in Asia by land area.
The country comprises 38 provinces, with a population
exceeding 270 million distributed across 1,904,569 km2.
Notably, Indonesia’s archipelagic nature encompasses over
17,000 islands, with Java being particularly densely pop-
ulated at approximately 1,100 persons per km2. The na-
tion has experienced substantial improvements in life ex-
pectancy, increasing from 68.68 years in 2010 to 72.32 years
in 2023. This progress correlates with economic advance-
ments, as evidenced by Indonesia’s ascension to upper-
middle-income status in 2021. Average household income
now approximates 10,089 U.S. dollars annually, reflecting
the country’s economic growth.
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According to data from the Ministry of Health, noncom-
municable diseases, specifically cardiovascular ailments,
malignancies, and chronic respiratory conditions, still con-
stitute primary morbidity and mortality factors. Concur-
rently, infectious diseases such as tuberculosis, COVID-
19, dengue fever, and malaria persist as substantial health
threats. Moreover, Indonesia confronts challenges in health-
care accessibility, predominantly attributed to socioeco-
nomic disparities and geographical variations. Of particular
concern is Indonesia’s alarmingly high smoking prevalence
among men, which exceeds 70% and ranks as the highest
globally. This statistic underscores the significant threat lung
cancer poses to the nation’s public health. The high smoking
rate exacerbates the already challenging health landscape,
further complicating efforts to address both communicable
and noncommunicable diseases effectively (UNICEF 2020).

The other significant challenge in the diagnosis and treat-
ment of lung diseases in Indonesia is the inadequate distri-
bution of pulmonologists, particularly in rural areas (of Pub-
lic Health 2024). The data reveals a pronounced geographi-
cal imbalance, with pulmonologists predominantly concen-
trated in the western regions, specifically Sumatra and Java
islands. However, even in these areas, the adequacy rate re-
mains suboptimal. This distribution pattern is particularly
concerning given that the highest incidence of pneumonia
occurs in the eastern regions of the country, where pulmo-
nologist availability is most scarce. This mismatch between
healthcare resource allocation and disease burden under-
scores a critical issue in Indonesia’s healthcare system, po-
tentially impacting timely diagnosis and effective treatment
of respiratory diseases in underserved areas.

Background
In the this modern context of medical diagnosis and treat-
ment, deep learning models exhibit great potential, particu-
larly in the interpretation of lung and pulmonary images and
the diagnosis of conditions such as pneumonia (Rauf et al.
2023; Dalhoumi et al. 2015; Albahli et al. 2021). Nonethe-
less, their effectiveness hinges upon the availability of exten-
sive and diverse datasets. A recent investigation has unveiled
a critical concern—deep learning models tend to overfit to
subtle biases present within institutional data, yielding sub-
optimal performance when tested against data from unseen
institutions. Notably, these models might inadvertently in-



corporate confounding factors tied to institutional biases, di-
verting their predictive focus away from the intended patho-
logical assessment. This phenomenon engenders high accu-
racy when assessed against internal data but falls short in
generalizing outcomes across external institutions or even
within different departments of the same institution.

An intuitive approach to surmount this challenge in-
volves augmenting the scale and diversity of training data
through collaborative learning paradigms, wherein multi-
institutional datasets converge within a unified model during
the machine learning process. This conventional practice of
constructing models via data collection on a single server,
however, introduces privacy concerns when transmitting
data over the internet. Extensive evidence substantiates the
viability of the re-identification process within anonymized
datasets, achieved through the linking of such data with aux-
iliary datasets (Narayanan and Shmatikov 2006, 2008).

Data privacy is a fundamental concern in today’s digi-
tal landscape, particularly in specific fields like healthcare.
It involves safeguarding sensitive and personal information
from unauthorized access, use, or disclosure. In the context
of medical image processing for diagnosis, we need a plat-
form that ensures patient-related information remains within
the boundaries of each hospital’s local infrastructure.

For instance, in a scenario where multiple hospitals col-
laborate to improve pneumonia detection using chest X-rays
through Federated Learning, data privacy ensures that the
actual X-ray images and associated patient identifiers never
leave the individual hospital’s network. Instead, only the
model updates are shared exclusively across the collaborat-
ing hospitals. This policy prevents the risk of data leakage,
where confidential patient information could inadvertently
become accessible to unauthorized parties, thus upholding
patient confidentiality and compliance with data protection
regulations like HIPAA or GDPR.

One well-known example of a privacy infringement case
in healthcare is the ”UCLA Health Data Breach” (Alder
2015; Reddy et al. 2022) incident. The University of Cali-
fornia, Los Angeles (UCLA) Health suffered a data breach
that compromised the personal and medical information of
approximately 4.5 million patients. The breach exposed sen-
sitive information such as names, birth dates, social security
numbers, medical record numbers, and even some medical
conditions of patients. This incident had serious implica-
tions for patient privacy, as the compromised data contained
personal and medical details that could be used for identity
theft, insurance fraud, and other malicious activities. UCLA
Health faced legal and regulatory consequences, including
lawsuits and fines and affected patients also had to deal with
the potential long-term consequences of their personal infor-
mation being exposed.

Proposed Method
As outlined in the previous discussion, several challenges
must be addressed through Federated Learning(McMahan
et al. 2023). One significant issue is the collection, cura-
tion, and management of X-ray image data from various col-
laborating hospitals. This requires a systematic approach to

ensure that the data is properly organized and maintained
across institutions.

Additionally, there is a need to collaboratively build a
lung disease detection model using the gathered data while
prioritizing patient privacy. It’s essential that the model de-
velopment process safeguards sensitive information, allow-
ing hospitals to benefit from shared knowledge without com-
promising patient confidentiality.

Finally, it’s crucial to create a secure diagnostic plat-
form that delivers anonymized and explainable results. Such
a platform would enhance trust in the system, provid-
ing healthcare professionals with insights that they can
understand and apply in their decision-making processes.
Together, these efforts can effectively leverage Federated
Learning to improve lung disease detection while address-
ing critical privacy and security concerns.

Figure 1: Federated Learning (Alfiansyah et al. 2024) model
aggregation cycle
1 Starting with an initial model, each computational node
constructs its local neural radiance network using its local

data. 2 The local model is then transferred to an
aggregation server for fusion with models from other

nodes. 3 the updated model is sent back to the local node
servers for further retraining by iterating process to step 1.

1. Building Local Model: Each hospital involved makes
their own deep learning model using the X-ray pictures
they collected from their patients. They train these local
models using CNN inside the hospital. This way, patient
data stays safe inside the hospital and doesn’t go out.

2. Combine and Integrate: Hospitals send the weights of
their models to a central server. This server is like a
mixer; it combines the weights from all hospitals to cre-
ate one big global model. In our implementation, we sim-
ply averaged the total CNN weights from each hospital.
This model learns from all the hospitals without sharing
any sensitive patient information.



3. Share and Update Global Model: The centralized
global model goes back to each hospital to help start
more local training. Hospitals then use this global model
to improve their own models with local data and what
they learn from the global model. This sharing and up-
dating keeps going until everyone agrees it works well.

4. Safe and Privacy Preserving Predictions: Hospitals
and authorized third parties that are not directly involved
can use the trained model to make predictions on new
X-ray pictures. They can give new images to the model
and get results, but they cannot access actual patient data,
keeping privacy safe and following rules.

To improve the practical use of the proposed platform, we
have established a two-layer server system that includes sep-
arate local servers in each hospital and a central aggregator
server. The local servers manage tasks such as storing, or-
ganizing, and labeling medical data, which helps in handling
the information effectively. The aggregator server serves as
the main hub that combines the local models from various
hospitals in the network. It also stores the combined model,
which can be accessed for diagnosis whenever needed. This
server setup allows for smooth cooperation between the lo-
cal servers and the central aggregator, enhancing the overall
efficiency of the platform.

Each local node in this platform is an extension of XNAT
(Marcus et al. 2007; Alfiansyah et al. 2024), allowing each
hospital to curate and manage patient data while conducting
local learning. Physically, each node is equipped with a GPU
to facilitate efficient learning.

Implemented Federated Learning
Federated learning (FL) is a collaborative approach to ma-
chine learning that addresses data privacy and governance
concerns. It allows multiple parties to train algorithms to-
gether without directly sharing their data. While initially de-
veloped for applications like mobile and edge computing,
FL has recently gained popularity in healthcare settings.

The key advantage of FL in healthcare is that it enables in-
stitutions to collectively develop insights and create a shared
model without transferring sensitive patient data beyond
their own secure networks. Instead, the machine learning
process occurs independently at each participating organi-
zation, with only model-related information (such as param-
eters or gradients) being exchanged.

On our platform, we employ three methods for lung
disease screening: chest X-ray (CXR) classification using
Densenet, object detection to identify specific lung disease
locations with YOLO, and tuberculosis detection utilizing a
combination of attention mechanisms and CNN.

At first during the initial phase of our study to develop x-
ray classification, we evaluated the performance of several
advanced neural network architectures for this tasks using a
meticulously curated dataset. The architectures examined in-
cluded Inception, VGG, ResNet, and DenseNet, each bring-
ing unique strengths to the table. Inception excels at process-
ing information across multiple scales, VGG is recognized
for its straightforward yet effective deep learning implemen-
tation, ResNet employs residual connections to address the

vanishing gradient problem, and DenseNet is notable for its
densely connected layers that enhance feature propagation
and reuse. Among these, DenseNet achieved the highest F1-
score of 91.90, reflecting its superior balance between preci-
sion and recall, making it a prime candidate for pneumonia
detection (Alfiansyah et al. 2024).

We enhance our capacity to accurately identify subtle pat-
terns associated with pneumonia in medical images. This
decision aligns with our strategic goal of integrating dis-
tributed data sources while prioritizing data privacy, thereby
safeguarding sensitive health information as we advance
our diagnostic capabilities. Furthermore, adopting DenseNet
showcases our commitment to leveraging state-of-the-art
methodologies in medical image analysis, ultimately push-
ing the envelope of current diagnostic standards.

For second method we implemented in our detection
model is YOLO (You Only Look Once) method. The pro-
cess of aggregating a model involves sophisticated parame-
ter management due to the architecture’s inherent complex-
ity, comprising multiple interconnected components such as
the backbone, neck, and detection head. Each client inde-
pendently trains its local YOLO model on its private dataset,
updating the model weights via stochastic gradient descent
or similar optimization techniques. These local weight up-
dates are then transmitted—typically as tensors represent-
ing the model parameters—to the central server. The core
aggregation mechanism relies on the Federated Averaging
(FedAvg) algorithm (McMahan et al. 2023), which com-
putes a weighted average of these local parameters, where
the weights are proportional to each client’s dataset size,
ensuring that clients with more data have a proportionally
greater influence on the global model.

Implementing this in practice requires careful handling of
model parameter tensors, often necessitating their flattening
into vectors to streamline element-wise operations, or main-
taining a structured approach that respects different layer
types. Given YOLO’s architecture, aggregating layer-wise
parameters separately can help mitigate issues inherent to
heterogeneity—for example, the backbone, which extracts
features, may require different aggregation considerations
compared to the detection head responsible for bounding
box predictions.

To maintain model stability and improve convergence,
several advanced techniques are employed. Layer-wise ag-
gregation can assign different importance weights across
layers, especially for layers more sensitive to local data dis-
tribution variations. Regularization methods such as Fed-
Prox (Sahu et al. 2018) introduce a proximal term to prevent
excessive divergence between local updates and the current
global model:

Lk(w) = fk(w) +
µ

2
||w − wt||2 (1)

where:

• fk(w) is the original loss function for client k.

• w is the model parameter.

• wt is the global model parameter at iteration t.



• µ is a non-negative regularization parameter that controls
the impact of the proximal term that encourages local up-
dates to remain close to the current global parameters.

To ensure convergence and robustness, iterative training
proceeds over multiple communication rounds, with peri-
odic validation against hold-out datasets. This process in-
volves updating the central global model with aggregated
parameters, distributing it back to the clients, and repeating
the cycle until satisfactory performance is achieved.

In third method, we aggregate attention mechanisms
within a FL framework involves the consolidation of at-
tention representations—such as attention weight matrices
or activation maps—across multiple client devices. Unlike
standard parameter aggregation, attention aggregation re-
quires a focused approach to preserve the interpretability
and spatial relevance of attention maps. During local train-
ing, each client computes attention weights or activation
maps, typically represented as tensors with dimensions cor-
responding to spatial features (e.g., ( H ×W × C)), which
highlight salient regions relevant to the task. These attention
outputs are transmitted to the central server either directly or
via distillation techniques, where they serve as interpretable
features for aggregation.

On the server side, aggregation methods such as element-
wise averaging are employed if attention maps are spa-
tially aligned and share the same dimensions; this yields
a mean attention map that reflects regions consistently at-
tended across clients. To incorporate varying client data
sizes or reliability, weighted averaging schemes can be uti-
lized, assigning importance based on dataset size, data qual-
ity, or trust scores:

Aglobal =

∑K
k=1 nk ·Ak∑K

k=1 nk

(2)

where Ak denotes the attention map from client (k), and
nk is its dataset size.

In summary, attention aggregation in FL involves col-
lecting spatial attention tensors, applying weighted or un-
weighted averaging, optionally training dedicated fusion
models to generate consensus attention maps, and imple-
menting regularization strategies during local training to en-
hance cross-client attention alignment. This paradigm ad-
dresses the need for interpretability, robustness, and spatial
focus preservation in decentralized models tackling tasks
such as medical image analysis and object detection.

To ensure convergence and robustness, iterative training
proceeds over multiple communication rounds, with peri-
odic validation against hold-out datasets. This process in-
volves updating the central global model with aggregated
parameters, distributing it back to the clients, and repeating
the cycle until satisfactory performance is achieved.

Local Data Storage
The implementation of this server is important across all par-
ticipating project-affiliated hospitals, serving a dual role in
managing patient data curation within hospital and annotat-
ing chest training data. Beyond these functions, the server

Algorithm 1: The κ clients are indexed by k; β is the local
minibatch size, E is the number of local epochs, and η is the
learning rate.
Server side execution

1: Initialize neural network weight w0

2: for each round t = 1, 2, 3... do
3: m← (CK̇, 1)
4: St← random set of m clients
5: for each client k ϵ St in parallel do
6: wwk

t+1 ← ClientUpdate (k,wk
t )

7: mt ←
∑

kϵS nk

8: mt+1 ←
∑

kϵS
nk

mt
wk

t+1

9: end for
10: end for

ClientUpdate(k.w) //Run on client k

1: B← split data Pk into batches of the size B
2: for each local epoch i form 1 to E do
3: for each local epoch i form 1 to E do
4: w ← w − η∇ℓ(w; b)
5: end for
6: end for
7: return w to server

assumes a critical role in the initial development of a local-
ized pneumonia detection model, which precedes the aggre-
gation phase executed on the federated learning server. To
fulfill its multifaceted tasks effectively, the server demands
significant computational power. In this project, each server
uses an open source database provided by XNAT (Marcus
et al. 2010), (Marcus et al. 2007), (Schwartz et al. 2012) to
build an image storage database.

Figure 2: Local database server that is used to store patient
data in hospitals, perform anonymization and annotation and
build local models to be aggregated with models on other
servers

All studies conducted within this framework adhere to a
standardized workflow, as illustrated in Figure 1. Prior to
commencing data acquisition, each constituent center form-



ing the imaging network (depicted as Figure 1 part 1) un-
dergoes a meticulous setup procedure aimed at optimizing
data harmonization within the hospital environment. In the
context of pneumonia detection, this procedure is tailored
specifically to the chest X-ray imaging modality. The setup
entails follow-up visits to ensure sustained harmonization
over time. Once all participating centers have completed
the initial setup, patient inclusion initiates, and subjects are
scanned across the entire network, adhering rigorously to ac-
quisition protocols outlined by medical guidelines.

The processes of data anonymization and secure transfers,
denoted as 1 part 3, remain under the jurisdiction of each
local hospital. Following data collection, clinical research
associates meticulously scrutinize all raw data acquisitions
(represented by Figure 1 part 4)) utilizing a dedicated soft-
ware platform meticulously designed in alignment with this
project’s protocol. Notably adaptable to new protocols, this
platform facilitates protocol consistency checks, parameter
comparisons against initial center settings for each study,
and flexible conversion of raw DICOM images to alterna-
tive medical formats as required. Each sequence within the
protocol subsequently undergoes a comprehensive assess-
ment via a documented series of qualitative and quantitative
evaluation metrics. These metrics are engineered to charac-
terize various aspects, including acquisition slab position-
ing, movement anomalies, spikes, and other artifacts. Ad-
ditionally, they gauge the overall image quality through as-
sessments of contrast, noise levels, intensity uniformity, and
other pertinent parameters (depicted in Figure 2).

The successful completion of this initial quality assess-
ment confers authorization for further analysis that at the
end utilizing as dataset for local machine learning train-
ing sytems. The validated data is then gathered locally and
marked as training data to construct AI models for pneumo-
nia screening. The dataset undergoes initial annotation be-
fore being placed into a designated push zone (as shown in
Figure 1-4), where it is subjected to automatic sanity checks.
Subsequently, the dataset is automatically conveyed to a se-
cure directory, serving as the local dataset repository for our
federated learning approach across collaborating hospitals,
facilitated by our framework. Despite of duplication across
multiple storage sites, the training data remains within their
respective local storage in hospital (indicated by Figure 1
part 5). The contents of this directory are stored within a
local database, enabling local users to query the data effec-
tively.

Privacy Preserving Screening
The final implementation within our framework centers
on creating a user-friendly prototype system designed for
healthcare professionals. We developed this tool to provide
users with a clear understanding of the effectiveness of AI-
driven tools for lung-related diagnoses. This system acts as
a secondary opinion platform, enabling users to analyze im-
ages for confirmation or assistance in their diagnostic deci-
sions. Our solution is presented in the form of a mobile ap-
plication specifically aimed at predicting pneumonia from
chest X-rays, making it both accessible and practical for
healthcare providers.

Figure 3: A diagnostic application dashboard capable
of providing heatmaps for various lung-related diseases,
here is a predictive regions for Mass (can be found at
https://xraychest.pnumonai.asia/).

This approach offers several significant benefits. The sys-
tem is designed to keep patient data entirely on the user’s de-
vice, ensuring maximum privacy. Furthermore, all data pro-
cessing is conducted locally, enabling us to improve com-
putational scalability and reduce costs. In comparison, other
software deployment methods, such as a desktop applica-
tion, would involve considerable development effort, which
is impractical for a freely available prototype. Rather than
sending patient image data to a server, our system adopts a el
method. We deploy the pneumonia prediction model directly
on the user’s device, allowing predictions to be made using
only the local model. This architecture eliminates the need
to transmit any patient data outside of the device, enhancing
privacy and ensuring that no sensitive patient information is
shared externally.

Explainability
Providing an explanation for predictions is essential in build-
ing trust in the model’s accuracy and empowering users to
draw their own insights from the tool (as emphasized in sec-
tion 4). While there is a wide range of techniques available
for generating these explanations, we must work within a
constrained computational budget. This limitation necessi-
tates the careful selection of methods that effectively balance
interpretability and resource efficiency, ensuring that users
can gain valuable understanding without placing excessive
demands on computational resources.

To explain why a neural network makes certain predic-
tions, gradient saliency maps can be used, as discussed in
(Simonyan, Vedaldi, and Zisserman 2014) and (Lo, Cohen,
and Ding 2015). These maps are visual tools that pinpoint



which parts of an input, such as an image or text, the network
concentrates on during the prediction process. They work
like a ”heat map,” with brighter regions indicating more sig-
nificant areas for the prediction. To create gradient saliency
maps, one calculates the gradient of the model’s output (like
the predicted class score) concerning the input features. The
gradient’s magnitude reveals how much a slight alteration in
a specific input feature can influence the output.

When given an input image I and the presoftmax output y
from the neural network, we can determine the influence of
each pixel on a specific output ( yi ) or aggregate the effects
across all outputs. The computational expense of generat-
ing these saliency maps is equivalent to performing a sin-
gle feedforward pass through the network. The saliency map
helps explain the prediction for the task of max

{
0,

δy
δI

}
.

Generally, high gradient values tend to occur in clusters of
pixels, highlighting regions that are indicative of the disease.
However, one challenge with directly interpreting these gra-
dients is that high gradients appear not only at the exact loca-
tion of a significant feature, like a nodule, but also in areas
that influence the impact of that region, such as the space
surrounding a nodule.

However, one challenge in interpreting the gradients di-
rectly arises from their behavior at specific locations. High
gradient values are not only found at the precise locations of
key features—such as a nodule—but also in adjacent areas
that influence the network’s decision-making process. This
phenomenon indicates that while certain pixels may con-
tribute directly to the prediction, surrounding regions can
also play a significant role in shaping the outcome, com-
plicating the straightforward interpretation of the saliency
maps.

One difficulty in directly interpreting gradients is their
presence at particular spots. High gradient values appear not
just at the exact locations of important features like nodules,
but also in nearby areas that affect the network’s decision-
making. This means that while some pixels contribute di-
rectly to the prediction, the surrounding regions also signif-
icantly influence the outcome, making the interpretation of
saliency maps less straightforward.

Experiments and result
To asses the performance of the system we developed, we
set up local servers in various locations throughout Indone-
sia, as illustrated in Figure 4 there are 6 hospital contributed
in this study. All local servers are located at university hos-
pitals that are geographically distant from one another, with
network latencies that are relatively similar. Four of these
servers are situated outside of Java, while the other two are
on the island of Java. We need an aggregation server for thus
Federated Learning approche and the server is installed in
the univerity.

We have conducted an initial laboratory simulation study
on the use of federated learning for pneumonia screening,
along with a comparison to a centralized system, as refer-
enced in (Alfiansyah et al. 2024). This study confirms our
previous findings.

Figure 4: Geographic distribution of hospital host the servers
used in the experiments.

The results presented in the table 1 significant achieve-
ments in applying FL for lung disease detection across
multiple datasets and advanced CNN architectures. The
DenseNet model for X-ray classification, trained on both
RSNA and Kaggle datasets, achieved a high F1-score of
0.953, indicating a strong synergy between precision and
recall, and demonstrating the model’s robustness in identi-
fying lung abnormalities with minimal false positives and
negatives. This suggests that DenseNet is highly effective in
feature extraction and classification in medical imaging, es-
pecially under the federated setting where data heterogeneity
and privacy constraints are prevalent.

In the case of tuberculosis detection, the combination of
attention mechanisms with multilayer perceptrons (MLP) on
a multi-national patient cohort yielded an even higher F1-
score of 0.960. This reflects the model’s capacity to focus
on salient regions in the chest X-rays effectively, improving
its sensitivity and specificity across diverse populations. The
multi-national aspect underscores the model’s generalizabil-
ity, which is critical for real-world deployment across vary-
ing demographics and imaging conditions. Attention mod-
ules help enhance interpretability and focus the model’s ca-
pacity on critical features, which likely contributed to the
superior performance.

Furthermore, the object detection task utilizing YOLO
version 8 on the MIMIC-CXR dataset achieved an F1-score
of 0.961, indicating exceptional competence in localizing
and detecting lung lesions or abnormalities. YOLO’s real-
time detection capabilities combined with high accuracy
suggest its suitability for clinical workflows requiring rapid,
precise identification of pathological regions.

Overall, these results demonstrate that employing ad-
vanced CNN architectures in a federated learning frame-
work can effectively leverage diverse and sensitive med-
ical datasets without compromising patient privacy. The
high performance metrics across different tasks and datasets
affirm the potential of federated learning to enable scal-
able, privacy-preserving, and robust AI models for lung dis-
ease screening in hospitals and clinics. They also suggest
that such an approach can adapt well to the heterogene-
ity inherent in multi-institutional data, ultimately facilitating
broader deployment of AI-driven diagnostics in resource-



Task CNN type Dataset Precision Recall F1-Score

X-ray classification Dense-net RSNA database(Wang et al. 2017) and Kaggle 0.921 0.918 0.953

Tubercollosis 2 Attention+MLP 2 Multi-national patient cohort (Rahman et al. 2020) 0.957 0.922 0.960

Task CNN type Dataset Precision Recall F1-Score

Object Detection 2 YOLO ver 8 MIMIC-CXR Database (Johnson et al. 2024) 0.932 0.923 0.961

Table 1: X-ray screening methods implemented in this hospitals collaboration in Indonesia by means of federated learning

constrained settings like Indonesia.

Discussion
Federated Learning represents a significant shift from tradi-
tional centralized data storage methods, making it essential
to recognize its effects on the various participants within a
Federated Learning ecosystem. During the development of
this research, we observed that multiple stakeholders could
benefit from the project we developed, as outlined in the fol-
lowing part.

Clinicians Clinicians often encounter a limited subset of
the population influenced by their geographic and demo-
graphic context, which can lead to skewed perceptions of
disease probabilities and their relationships. Implementing
machine learning (ML) systems, like a second opinion tool,
allows them to enhance their skills with insights from other
institutions, promoting diagnostic consistency that is cur-
rently hard to achieve. While this benefit applies broadly to
ML systems, those trained through federated methods may
produce even less biased outcomes and greater sensitivity to
uncommon cases, as they have access to a more diverse data
set. However, this requires initial efforts to establish agree-
ments on data structure, annotation, and reporting protocols
to ensure that all collaborators understand the information in
a unified way.

Patients Typically, patients receive treatment at local fa-
cilities. Implementing Federated Learning (FL) on a global
scale could enhance the quality of clinical decision-making,
irrespective of where the treatment occurs. This approach
would particularly benefit individuals in remote locations
by providing them access to high-quality, machine-learning-
assisted diagnoses similar to those offered in larger hospi-
tals with extensive case histories. The same applies to rare
or geographically specific diseases, where quicker and more
precise diagnostics can lead to better outcomes. Addition-
ally, FL could make it easier for patients to share their data,
as they would have the reassurance that their information
stays within their own healthcare institution and that they
can withdraw access at any time.

Hospitals and practices Hospitals and medical practices
can maintain complete control over their patient data, en-
suring traceability of data access and reducing the risk of
misuse by external parties. However, achieving this requires
investment in on-site computing infrastructure or private
cloud services, along with adherence to standardized data
formats to facilitate seamless training and evaluation of ma-
chine learning (ML) models. The computing requirements

will vary depending on whether a facility is involved solely
in evaluation and testing or also in the training process. Even
smaller institutions can participate and still reap the benefits
of the collaborative models developed.

Researchers and AI developers Researchers and AI de-
velopers can gain access to a potentially extensive repos-
itory of real-world data, which is especially advantageous
for smaller research labs and startups. This allows them to
focus their resources on addressing clinical needs and re-
lated technical challenges rather than depending on the lim-
ited availability of open datasets. However, it will be essen-
tial to explore algorithmic strategies for federated training,
such as efficient model combination and updates, as well
as ensuring robustness to distribution shifts. Additionally,
working within a federated learning framework means that
researchers or AI developers cannot fully examine or visual-
ize the complete dataset used for training the model, which
limits their ability to analyze individual failure cases to un-
derstand why the model may not perform well in certain sit-
uations.

Healthcare providers In many countries, healthcare
providers are experiencing a significant shift from volume-
based care, where payment is tied to service quantity, to
value-based care, closely linked to the advancement of preci-
sion medicine. This transition aims not to advocate for more
costly individualized treatments but to achieve improved pa-
tient outcomes more efficiently through targeted therapies,
ultimately lowering costs. Federated Learning (FL) has the
potential to enhance the accuracy and reliability of AI in
healthcare, while simultaneously reducing expenses and im-
proving patient care, making it an essential component of
precision medicine.

Manufacturers Healthcare software and hardware man-
ufacturers can also benefit from FL, as it allows for the in-
tegration of learning from numerous devices and applica-
tions while keeping patient-specific data confidential. This
approach can support the ongoing validation and enhance-
ment of their machine learning systems. However, achiev-
ing this capability may necessitate substantial upgrades to
local computing resources, data storage, networking infras-
tructure, and related software systems.

Conclusion
In conclusion, this study demonstrates the effectiveness of
federated learning in advancing medical diagnostics, par-
ticularly for pneumonia detection in Indonesia. By facili-
tating collaborative machine learning across multiple insti-



tutions and prioritizing patient data privacy through decen-
tralized data storage and shared model updates, the research
addresses crucial ethical and technical challenges in health-
care AI. The development of a multi-institutional collabo-
rative platform, enhanced by federated learning and incor-
porating data anonymization and explainability techniques,
sets a new standard for responsible AI in healthcare. This
approach enhances the accuracy and generalization of di-
agnostic models, providing clinicians with valuable insights
and contributing to improved patient outcomes and a more
equitable healthcare landscape. Federated learning signifies
a significant shift from traditional centralized data meth-
ods, benefitting clinicians, patients, hospitals, practices, re-
searchers, and AI developers alike.
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