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Abstract 
The integration of Large Language Models (LLMs) within a 
Retrieval-Augmented Generation (RAG) framework, com-
bined with Symbolic Logic (SL), holds significant potential 
as a reasoning engine for complex agricultural decision-mak-
ing to ensure reliability, and as a centralized repository of do-
main-specific agricultural knowledge. However, since the 
smart farming domain also deals with Data Mediated by the 
Process (DMP), which is predominantly structured, LLMs 
often struggle to generate and run SQL queries for a signifi-
cant portion of these data interactions. In such cases, the RAG 
framework resorts to fetching structured data directly from 
the relevant database, which can lead to performance bottle-
necks and increased resource consumption, particularly when 
Big Data characteristics (Volume, Variety, Velocity) are 
prominent and traditional Online Analytical Processing 
(OLAP) frameworks prove ineffective. In this paper, we pro-
pose a novel Retrieval-Augmented OLAP (RA-OLAP) 
framework that leverages NoSQL databases to store OLAP 
cubes as cuboids with pre-calculated measures, employing a 
dictionary-based encoding strategy. Simultaneously, the 
same NoSQL database is utilized for vector search operations 
within the RAG architecture. This hybrid AI framework ad-
dresses three critical agricultural challenges: drought classi-
fication, crop production prediction, and equipment mainte-
nance. By integrating these components, our approach aims 
to enhance the scalability, efficiency, and accuracy of data-
driven decision-making. 

 Introduction    
In the field of agriculture, data sources can be broadly cate-
gorized into three types, as outlined in Table 1: 
• Data Mediated by the Process (DMP): This type of data 

is generated during daily agricultural operations, such as 
recording productivity metrics, fertilizer applications, and 
other routine activities. 

• Data Generated by Machines (DGM): This includes data 
collected from IoT devices, smart sensors, and other au-
tomated systems designed to monitor and measure agri-
cultural processes. 

• Data of Human Origin (DHO): This encompasses data de-
rived from human inputs, such as farmers' experiential 
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knowledge, consumer feedback, and other qualitative in-
sights and human cognitive abilities. 

 
 
 
 
 
 
 

Table 1: Data source nature in Smart Farming 
 
A robust and reliable smart decision-making system must be 
capable of efficiently processing, storing, and retrieving ac-
tionable insights from all three types of data sources [1][2]. 
 Historically, the industry has relied on the Online Trans-
action Processing (OLTP) data model to manage transac-
tional data through a normalization approach. However, 
OLTP systems are inherently incompatible with advanced 
data analytics due to their focus on transactional efficiency 
rather than analytical flexibility. To address this limitation, 
the OLAP data model was introduced, which transforms 
normalized data into fact and dimension schemas via the 
ETL (Extract, Transform, Load) process. While OLAP fa-
cilitates multidimensional analysis, it remains highly struc-
tured and is not directly compatible with modern Generative 
AI systems, particularly those based on Large Language 
Models (LLMs) [3][4]. 
 LLMs, on the other hand, primarily rely on vector data-
bases, which are optimized for semantic search and natural 
language processing (NLP) but lack the capability to support 
seamless OLAP processing [34][35]. This becomes particu-
larly problematic when dealing with Key Performance Indi-
cators (KPIs), which often require complex aggregations 
across multiple dimensions (primarily from DMPs and 
DHOs) and measures (primarily from DGMs). Additionally, 
vector databases face significant challenges in updating or 
removing specific data points, as these operations can dis-
rupt the integrity of the embedded vector representations 
[4][5]. 

 

 Data Structure Ingestion Data Model 
DMP Predominantly  

Structured 
Mostly Batch  

Processing 
Relational,  

Dimensional 
DGM Typically 

Semi-Structured 
Mostly Real-Time 

Processing 
NoSQL,  

Dimensional 
DHO Often 

Unstructured 
Mostly one-time-

Load 
Flat,  

Dimensional 

 



This disconnect between structured OLAP systems and un-
structured LLM-based systems highlights a critical gap in 
the current technological landscape for smart agriculture. To 
address these challenges, we propose a novel framework 
that leverages the Reduce by Key and Flat Map functions 
within the Apache Spark framework for the creation of 
OLAP cuboids. This approach utilizes column-oriented dis-
tributed storage to store pre-calculated cube measures in a 
key-value format, ensuring efficient random read operations 
while simultaneously supporting vector search capabilities. 
By integrating these techniques, our framework bridges the 
gap between structured OLAP processing and unstructured 
data retrieval, enabling seamless interaction between the 
two paradigms. 
 The proposed framework combines symbolic reasoning 
implemented through expert system rules with machine 
learning models and RAG to retrieve domain-specific agri-
cultural knowledge and generate explainable insights. The 
symbolic reasoning component enhances decision support 
by validating predictions against expert-defined rules and 
known thresholds, ensuring consistency and reliability. 
Meanwhile, the RAG mechanism dynamically retrieves rel-
evant knowledge to refine predictions and provide context-
aware recommendations. As described in Figure 1, the RA-
OLAP architecture leverages a structured pipeline where the 
Front-end handles query processing, the Back-end inte-
grates AI reasoning with OLAP analytics, and the Memory 
Subsystem optimizes retrieval and caching to ensure effec-
tive Spark lazy evaluation and timely decision-making [6]. 
 
 

 

 

 
 
 
 
 
 
 
Figure 1: RA-OLAP Computational Workflow Architec-
ture: Integrating RAG, Symbolic Logic, and OLAP for Hy-
brid AI Reasoning 
 
Additionally, our framework incorporates breakdown detec-
tion model to predict maintenance needs for agricultural 
equipment using data from IoT sensors. This proactive ap-
proach minimizes downtime and optimizes resource utiliza-
tion, further enhancing the efficiency of agricultural opera-
tions. 
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Experimental results demonstrate the effectiveness of our 
RA-OLAP framework in improving the precision and relia-
bility of agricultural data analysis. The framework provides 
actionable, interpretable insights for farmers, empowering 
them to make informed decisions. By combining the 
strengths of symbolic reasoning, machine learning, and 
modern retrieval systems with OLAP, this work lays the 
foundation for future research in the agricultural sector. It 
opens new avenues for developing hybrid AI systems that 
integrate structured and unstructured data processing, ulti-
mately advancing the field of smart agriculture. 

Related Works    

LLMs with Structured Data and OLAP Queries 
LLMs like GPT-3 have demonstrated proficiency in NLP 
tasks; however, their effectiveness diminishes when manag-
ing structured data and executing OLAP queries. For in-
stance, Chen et al. (2021) observed that LLMs struggle with 
tasks requiring precise data manipulation, such as generat-
ing SQL queries for complex databases, leading to inaccu-
racies in data retrieval. Similarly, Shi et al. (2022) high-
lighted that while RAG systems enhance LLMs by incorpo-
rating external knowledge, they often falter in scenarios de-
manding intricate data aggregations typical of OLAP oper-
ations. These limitations underscore the necessity for inte-
grating more structured data handling capabilities into 
LLMs and RAG frameworks. 
 To mitigate these challenges, researchers like Zhang et al. 
(2023) proposed a system combining LLMs with traditional 
database management techniques to improve the accuracy 
of structured data queries. Despite these advancements, the 
integration remains imperfect, with issues in scalability and 
real-time data processing still prevalent [4]. 

OLAP Limitations in Distributed Systems 
Traditional OLAP systems are designed for interactive anal-
ysis of multidimensional data but encounter scalability is-
sues in distributed (big data) environments. Kim and Park 
(2020) demonstrated that as data volumes expand, maintain-
ing performance and ensuring real-time analytics become 
increasingly challenging due to the inherent limitations of 
centralized OLAP architectures. Li et al. (2021) further 
noted that distributed OLAP architectures, while addressing 
some scalability concerns, introduce complexities related to 
data consistency and system latency [7][8]. 
 Moreover, García-Molina et al. (2022) investigated the 
application of parallel processing techniques in OLAP sys-
tems to enhance performance [9]. Their findings indicate 
that although parallelism can alleviate some bottlenecks, it 
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also leads to increased system complexity and synchroniza-
tion issues in heterogeneous computing environments. 

Symbolic Logic with LLMs and RAG Systems 
The integration of Symbolic Logic (SL) with neural ap-
proaches has led to the emergence of neuro-symbolic AI, 
aiming to combine the strengths of both paradigms. Besold 
et al. (2017) discussed the potential of neuro-symbolic sys-
tems to perform logical reasoning and handle structured data 
more effectively. Yang et al. (2020) proposed a framework 
that integrates SL with LLMs to enhance explainability and 
reasoning capabilities, addressing some limitations of 
purely neural models [10][11]. 
 However, challenges persist in seamlessly combining 
these approaches. Sarker et al. (2021) highlighted difficul-
ties in aligning the probabilistic nature of neural networks 
with the deterministic characteristics of symbolic logic sys-
tems, which can lead to inconsistencies and reduced system 
robustness [12]. 

Methodology  
In this section, we address the challenge of developing OLAP 
cubes in a distributed system while ensuring real-time pro-
cessing capabilities. Additionally, we explore leveraging the 
cuboids-based model for structured data within a RAG frame-
work and integrating vector search to enhance support for 
LLMs. 

Background and Motivation 
RAG systems enhance LLM reasoning by integrating re-
trieval-based augmentation. RAG can be implemented using 
either distributed systems (e.g., Spark, Databricks, Ray) 
based on fundamental concepts of mapping, shuffling and 
compute results or serverless architectures (e.g., AWS 
Lambda, Azure Functions), each with distinct advantages. 
In distributed RAG, document embeddings 𝐷 = {𝑑𝑖 ∈
𝑅𝑑}𝑖=1

𝑁  are stored across multiple nodes, with query embed-
dings 𝑞 ∈ 𝑅𝑑 retrieved using cosine similarity:  

sim(𝑞, 𝑑𝑖) =
𝑞 ⋅ 𝑑𝑖

∥ 𝑞 ∥∥ 𝑑𝑖 ∥
 

The dataset is sharded across worker nodes 𝑊𝑗, reducing 
query latency to 𝑂(log𝑁) via Approximate Nearest Neigh-
bor (ANN) search or locality-sensitive hashing (LSH), mak-
ing it optimal for high-throughput, multi-terabyte RAG sys-
tems. The Parallelized retrieval is formulated as follows: 
𝐷 = ⋃

𝑘

𝑗=1
𝐷𝑗 ,where 𝐷𝑗 ∩ 𝐷𝑗′ = ⌀, ∀𝑗 ≠ 𝑗′ where 𝑘 is the num-

ber of partitions. LLM inference is distributed using tensor 
parallelism, reducing processing time per token: 
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𝑡LLM =
𝑇

𝑘
,where 𝑇 is sequence length 

However, it requires cluster management, leading to higher 
infrastructure costs [4][16][17]. 
 In contrast, serverless RAG offloads retrieval to managed 
vector databases (e.g., Pinecone, OpenSearch), introducing 
additional network latency: 𝑡retrieval = 𝑡query + 𝑡API where 
𝑡query is the embedding similarity lookup time, and 𝑡API in-
cludes network overhead. Unlike distributed RAG, where 
batch queries reduce overhead, serverless RAG performs in-
dividual queries, which increases cumulative latency for 
multiple requests [18][19][20].  
 In the LLM generation step, both approaches use an auto-
regressive model 𝑓 (e.g., GPT-4, Llama 2), where the prob-
ability of generating a token sequence 𝑦1:𝑇 given the query 
and retrieved context 𝐶 is computed as: 𝑃(𝑦1:𝑇 ∣ 𝑞, 𝐶) =
∏ 𝑃𝑇

𝑡=1 (𝑦𝑡 ∣ 𝑦1:𝑡−1, 𝑞, 𝐶; 𝜃) where 𝜃 represents model pa-
rameters. In distributed RAG, this process is parallelized 
across GPU instances using tensor parallelism, reducing in-
ference latency 𝑂(𝑇) → 𝑂(𝑇/𝑘) with 𝑘 GPU shards. In 
contrast, serverless RAG relies on external API inference, 
adding additional latency 𝑡API-infer per request: 𝑡total =
𝑡retrieval + 𝑡API-infer which can be costly due to per-query API 
pricing in cloud services like OpenAI API, AWS Bedrock, 
and Azure OpenAI. 
 Thus, distributed RAG is optimized for large-scale re-
trieval and parallelized inference with reduced latency 
𝑂(log𝑁) for retrieval and 𝑂(𝑇/𝑘) for LLM generation. 
Serverless architectures eliminate infrastructure manage-
ment and scale efficiently for low-volume workloads but 
suffer from higher per-query cost and increased latency due 
to API dependencies, and is best suited for on-demand in-
ference rather than batch processing. A hybrid approach op-
timizes cost and efficiency by precomputing embeddings in 
a distributed system and storing them in a managed vector 
database for real-time serverless retrieval. This minimizes: 
𝑡retrieval = 𝑂(log𝑁), 𝑡inference = 𝑂(𝑇/𝑘) providing an opti-
mal balance for enterprise-scale applications.  

Problem Formulation 
OLAP in Distributed Systems. Most distributed systems, 
especially those designed for large-scale data processing 
follow a structured execution model comprising three key 
phases: mapping (data partitioning and parallel task distri-
bution), shuffling (data redistribution across nodes based on 
keys), and aggregation (final computation and result merg-
ing). This model is fundamental in distributed frameworks 
such as MapReduce (Dean and Ghemawat 2004), Apache 
Spark (Zaharia et al. 2010), and distributed OLAP engines 
(Gon-zalez et al. 2014), enabling efficient, fault-tolerant an-
alytics across multiple nodes [21][22][23]. 

 



 However, OLAP workloads in distributed environments 
face efficiency constraints due to inter-node coordination 
overhead. Given an analytical query 𝑄 operating on a da-
taset 𝐷 distributed across 𝑁 nodes, the execution time can 
be approximated as: 

𝑇(𝑄) = 𝑇𝑚 + 𝑇𝑠 + 𝑇𝑎 
where: 
• 𝑇𝑚 is the mapping phase time, modeled as: 

𝑇𝑚 = max
𝑖∈𝑁

𝑓(𝐷𝑖) 

where 𝑓(𝐷𝑖) is the computation time for each partition 𝐷𝑖 . 
• 𝑇𝑠 is the shuffling phase time, which is proportional to the 

data size ∣ 𝐷 ∣ and the network bandwidth 𝐵: 

𝑇𝑠 ≈
∣ 𝐷 ∣

𝐵
 

• 𝑇𝑎  is the aggregation phase time, dependent on the 
function complexity 𝑔 and the number of nodes 𝑁: 

𝑇𝑎 = 𝑂(𝑔(𝑁)) 

This decomposition shows that shuffling introduces signifi-
cant overhead, especially for OLAP queries involving 
group-by, join, and roll-up operations, which require exten-
sive data redistribution across nodes (Chen et al. 2012). 
Moreover, in highly distributed OLAP settings, the query 
response time follows: 

𝑇𝑂𝐿𝐴𝑃 ≈ 𝑂 (
∣ 𝐷 ∣

𝐵
+ 𝑔(𝑁)) 

Indicating that as the dataset grows, network transfer (shuf-
fling) and aggregation complexity become dominant bottle-
necks (Abadi et al. 2009). Figure 2 highlights an example of 
the fundamental concept of parallel computing in distributed 
systems, revealing potential inefficiencies that can arise 
when applied to OLAP workloads. To mitigate these ineffi-
ciencies, hybrid architectures integrating precomputed 
OLAP cubes, adaptive caching, and query optimization 
techniques (Stonebraker et al. 2013) can minimize redun-
dant data movement and reduce coordination costs, leading 
to more scalable OLAP workloads in distributed environ-
ments [24][25][26].  
 However, this proposition does not seamlessly transfer to 
NoSQL systems like Cassandra, which use a wide-column 
model optimized for high-ingestion rates rather than analyt-
ical queries. A key limitation is the shuffling and aggrega-
tion overhead inherent in distributed NoSQL architectures, 
where cross-node data movement significantly impacts 
query performance. Given an aggregation query Q over a 
distributed dataset D, the shuffle cost can be approximated 
as O(n * p), where n is the number of partitions involved, 
and p is the average partitions scanned per query. Unlike co-

lumnar OLAP engines that minimize I/O through com-
pressed columnar scans, Cassandra executes queries via par-
tition-range scans, leading to higher data retrieval costs 
when performing multi-dimensional roll-ups. Addressing 
these inefficiencies, an OLAP cuboid model in Cassandra 
could precompute hierarchical aggregations, thereby reduc-
ing shuffle operations and enabling sublinear query execu-
tion for structured analytical workloads [27][28][29]. 
 

Reduce by Key and Flat Map for Cubes Creation 
Cubes creation workflow. We propose utilizing the 
Apache Spark framework to construct OLAP cubes, ensur-
ing efficient in-memory calculations and massive parallel 
processing (MPP) [30], while leveraging Cassandra for the 
storage of cuboids, providing interval-based lookups 
through row key prefixes. As depicted in Figure 3, the pro-
cess begins by selecting the relevant dimensions and 
measures for the OLAP cube from the centralized repository 
(in our case, a Data Vault-based model within the structure 
layer) and integrating them into a flat table. The second step 
involves performing all necessary aggregations as defined 
in the configuration table, based on the data model, and stor-
ing the results in an aggregated table. The final step entails 
converting the aggregated tables into key-value format, 
transforming them into Sorted String Tables (SSTables) 
[31], and loading them into Cassandra via a bulk load pro-
cess, which, according to our tests, performs eight times 
faster than traditional methods. 
 
Optimized construction of OLAP aggregate table. The 
construction of the OLAP aggregate table in Apache Spark 
follows a hierarchical approach based on the generation of 
cuboids, reducing dimensionality at each step. As illustrated 
in the Figure 4, given an initial cuboid with 𝑁 dimensions, 
the process is structured as follows: 
1. Initial Grouping and Aggregation: The first transfor-

mation applies ReduceByKey, where the key 𝐾 is rep-
resented by the 𝑁 dimensions, and the value 𝑉 corre-
sponds to the aggregated measure. Formally: 
  𝐾 = (𝑑1, 𝑑2, . . . , 𝑑𝑁), 𝑉 = 𝑓(𝑚1, 𝑚2, . . . , 𝑚𝑘) 

Figure 2: Example of fundamental concept of Parallel com-
puting process in a distributed system 



where 𝑑𝑖 are the dimensions, and 𝑚𝑖 are the measures 
being aggregated (sum, count, average, etc.). This op-
eration is performed in-memory due to Spark’s lazy 
evaluation mechanism (Zaharia et al., 2012). 

2. Flattening and Parent-Child DataFrame Derivation: After 
aggregation, a FlatMap operation is applied to decom-
pose the parent DataFrame into multiple child Data-
Frames with 𝑁 − 1 dimensions. If 𝐶𝑁 represents the 
parent cuboid at level 𝑁, then its derived cuboids 𝐶𝑁−1 
are given by: 

  𝐶𝑁−1 = ⋃
𝑁

𝑖=1
𝜋−𝑑𝑖

(𝐶𝑁) 

where 𝜋−𝑑𝑖
 denotes the projection operation that re-

moves dimension 𝑑𝑖. This step exploits Spark's in-
memory processing to avoid unnecessary disk I/O, re-
ducing computational overhead. 

3. Execution and Persistence in HDFS: Spark's lazy evalua-
tion ensures that transformations are only computed 
when an action (e.g., write()) is triggered. Until this mo-
ment, intermediate computations remain in-memory. 
The parent DataFrame is only written to HDFS at the 
final stage to release memory and enable subsequent 
processing steps (Armbrust et al., 2015). This iterative 
process continues until reaching the apex cuboid or 0D 
cuboid, which corresponds to the fully aggregated 
measure: 

  𝐶0 = Global Aggregate = 𝑓(𝑉) 

where 𝐶0 represents the total aggregation over all di-
mensions, meaning the group-by query is empty. 

This hierarchical OLAP cuboid generation model in Spark 
provides a scalable and memory-efficient approach for mul-
tidimensional aggregation, addressing traditional shuffle 
and aggregation bottlenecks in large-scale data processing 
(Stonebraker et al., 2013). 

Encoding based Conversion to Key Value Format 
The encoding process aims to leverage hashing and interval-
based lookups in Cassandra by efficiently constructing row 
keys. Each OLAP cube maintains an encoding dictionary, 
where each dimension in the pre-joined table is assigned an 
encoded value. This encoding facilitates direct row access 
during queries, avoiding costly full-table scans. 
 

Encoding Process and Dimension Representation. Given 
a cube with 𝐷 dimensions and 𝑀 measures, each dimension 
𝑑𝑖 ∈ 𝐷 is encoded using a binary representation. The encod-
ing dictionary 𝐸 maps each dimension value 𝑣𝑗 to a unique 
integer: 

𝐸: 𝑣𝑗 → 𝑒𝑗, where 𝑒𝑗 ∈ 𝑍+ 
For example, in the Figure 5, the dictionary assigns: 

𝐸(Y1) = 0, 𝐸(Y2) = 1, 𝐸(X1) = 0, 𝐸(X2) = 1 
Each cuboid 𝐶𝑘 ⊆ 𝐷 (a subset of dimensions used in aggre-
gation) is identified by a bit vector of size 𝐷. The presence 
of a dimension is denoted as 1, while its absence is 0 (i.e., 
dimensions excluded from the GROUP BY clause). Given 
two dimensions, the bit vector 𝐵 for a cuboid 𝐶𝑘 is: 

𝐵(𝐶𝑘) = (𝑏1, 𝑏2, . . . , 𝑏𝐷), 𝑏𝑖 ∈ {0,1} 
For example, if 𝐶𝑘 contains both DY and DX, then 𝐵(𝐶𝑘) =
(1,1), while if it contains only DY, then 𝐵(𝐶𝑘) = (1,0). 
 
Row Key Generation in Cassandra. The Cassandra row 
key is constructed by concatenating the bit vector 𝐵(𝐶𝑘) 
with the encoded dimension values 𝑒𝑗 from 𝐸. Formally, the 
row key 𝑅(𝐶𝑘) is: 

𝑅(𝐶𝑘) = concat(𝐵(𝐶𝑘), 𝐸(𝑑1), E(𝑑2), … , 𝐸(𝑑𝑚)) ,  
where 𝑑𝑖 ∈ 𝐶𝑘 

For instance, in the Figure 5: 
• The row key 00000000 corresponds to the fully aggre-

gated cube (*, *) with a total sum of 100. 
• The row key 00000001+0 represents dimension DY = 

Y1, summing over all values of DX, with a sum of 80. 
• The row key 00000011+01 encodes DY = Y2, DX = X2, 

storing the sum 20. 
 
Efficient OLAP Query Processing in Cassandra. This 
row key encoding approach enables direct access to the re-
quired records in Cassandra via prefix-based row key scans 
rather than exhaustive table scans. Specifically: 
• Queries on higher-dimensional aggregations (e.g., 

GROUP BY DY) leverage prefix scans over the row 
keys. 

• The sequence of dimensions in the aggregated table en-
sures that query predicates maintain the same order, op-
timizing access patterns. 

Figure 3: Cubes development methodology: Spark-Based Cuboid Creation and Cassandra for Data Storage 



Reverse Engineering Retrieval of OLAP Queries 
Upon receiving a user query, it undergoes a transformation 
into an optimized execution plan. OLAP queries predomi-
nantly consist of column projections, relational table joins, 
predicate filters, and aggregation functions. The proposed 
approach achieves computational efficiency by precompu-
ting aggregations, eliminating the need for runtime joins, fil-
ters, or aggregation operations. This optimization is enabled 
by the pre-materialization of cuboids within the data cube, 
ensuring that query execution is reduced to direct key-based 
lookups, thereby minimizing computational complexity and 
I/O overhead. 
 
Identify Cassandra Cuboids. The first step in query exe-
cution (Algorithm 1) involves identifying the target cuboid 
that corresponds to the dimensions present in the SELECT 
and GROUP BY clauses of the user query. This is achieved 
through a reverse engineering process, where the query 
structure is analyzed to derive the corresponding Cuboid ID 
using the same encoding steps. Additionally, filtering con-
ditions specified in the WHERE clause are mapped to their 
corresponding encoded values from a dictionary. 
 

Define the Scan Range. The Define Scan Range from 
Query step (Algorithm 2) is designed to efficiently translate 
user query conditions into a scan range within Cassandra, 
specifically targeting row keys generated through encoding. 
First, the query's filter values are mapped to their encoded 
values based on the encoding dictionary, ensuring that the 
exact key range for the cuboid (identified by cuboid ID) is 
scanned. The start and end of the scan range are defined by 
appending the encoded dimension values to the cuboid ID. 
This selective key construction allows for precise and effi-
cient querying of the required data, thus preventing a full 
table scan. This range scan technique is not only essential 
for improving query performance in large datasets but also 
provides substantial efficiency during ingestion, ensuring 
that the generated keys align with Cassandra's partitioning 
and clustering keys for optimized storage and retrieval. 

Database Scan. In this step (refer to Algorithm 3), we use 
interval-based lookups through row key prefixes. NoSQL 
databases like HBase support range scans and fuzzy row 
scans, which allow flexible and approximate searches within 
a dataset [32]. However, in Cassandra, we achieve the same 
filtering effect by leveraging efficient row key prefix 
searches within a defined scan range. The adapted algorithm 
ensures that only relevant data is retrieved by filtering based 

Figure 4: Construction of the Aggregate Table Figure 5: Encoding Flat Tables 

Algorithm 1: Identify Cuboid ID from Query (Cassandra-Based) 

1: procedure IDENTIFYCUBOIDID(dimensions, encoding-dict, df) 

2:  Define dim.position.map ← {‘DY’: ‘Y1’, ‘DX’: ‘X1’,, ‘farm’: ‘0’, 
‘farmer’: ‘0’} 

3:  cuboid_id ← concatenate [dim.position.map[dim] for each dim in di-
mensions] 

4:  cuboid_id ← cuboid_id.zfill(8) ▷ Ensure 8-bit Cuboid ID 

5:  encoded.values ← [ ] 

6:  for each dim in dimensions do 

7:    dim_name ← dim.capitalize() 

8:    dim_values ← encoding dict[df][filter where dimension_name = dim_name] 

9:  Append dim_values[‘encoded.value’].unique().tolist() to encoded.val-
ues  

10:  return cuboid_id, encoded.values 

Algorithm 2: Define Scan Range from Query 

1: Procedure DEFINESCANRANGEFROMQUERY (filters, cuboid_id, 
encoding_dict) 

2:   Initialize encoding.map ← encoding.dict set as index on (‘dimen-
sion.name’,‘encoded.value’)[‘encoded.value’].to.dict() 

3:   start, end ← cuboid_id, cuboid_id {Initialize start and end with 
Cuboid ID} 

4:   for each dim, dim_filters in filters.items() do 

5:    dim.encoded ← encoding.map[(dim.capitalize(), str(dim_filters[‘value’]))] 

6:    start ← start + ‘+’ + dim.encoded 

7:    end ← end + ‘+’ + dim.encoded 

8:   end for 

9:   return start, end 



on row_key >= scan_start AND row_key <= scan_end, ef-
fectively replacing HBase’s scan and fuzzy row filtering 
with Cassandra’s partitioned range queries. This enables op-
timized query execution, minimizes unnecessary data re-
trieval, and maintains performance efficiency in OLAP 
workloads. 

Decoding Outputs. When dealing with data stored in Cas-
sandra, the row key often encodes multiple dimensions, 
while the row value contains corresponding measures. To 
facilitate analysis and querying, it is necessary to decode the 
row key into meaningful dimensions and extract the relevant 
measures from the row value. This step ensures that the 
structured information is properly reconstructed from the 
storage format, allowing for effective data processing and 
visualization. Thus, the Algorithm 4 decodes the stored Cas-
sandra data by parsing the row key and combining it with 
extracted measures into a structured dataset. 

Experiments  

Experimental Setups 
Datasets. For drought management, we utilized data from 
an official government website, which includes crop statis-
tics (such as name, season, year, zone, production, and 
productivity), drought declarations (with associated year 
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and month), and hub device data from weather stations (con-
taining geography, precipitation, temperature, and atmos-
pheric pressure) [33]. For preventive maintenance, we em-
ployed data from phosphate extraction machines provided 
by Data Intelligence Delivery. This data encompasses meas-
urement trends (e.g., vibration, tension, temperature) cap-
tured by sensors, along with machine, section, intervention 
demand, and order information loaded from an Oracle 11G. 
 
Use Cases. For drought management, we implemented a 
two-stage classification approach. The first stage employs 
an Iterative Dichotomiser 3 (ID3) classifier, which uses in-
puts such as precipitation, pressure, and temperature to clas-
sify drought status into categories of low, medium, or high. 
The second stage utilizes another ID3 classifier, incorporat-
ing soil statistics, fertilizer data, and the results from the first 
classifier to predict crop growth and identify the most suita-
ble crops for each district. For preventive maintenance, we 
applied an Artificial Neural Network (ANN) to analyze ma-
chine behavior, predict the Mean Time Between Failures 
(MTBF), and generate notifications for timely interventions. 
 
RAG Flow. The preventive maintenance flow consists of 
three key components: (1) an Artificial Neural Network 
(ANN) regression model, (2) a Large Language Model 
(LLM) for interaction, and (3) Symbolic AI for explainable 
decision-making. The ANN model predicts machine failure 
risk based on sensor data such as temperature, vibration, 
voltage, and time since last maintenance, achieving an R² 
score of 0.89.  
 The LLM (GPT-4) translates natural language queries 
into optimized OLAP queries for efficient data retrieval 
from pre-calculated OLAP cubes, e.g.: 
• Input in Natural Language Query: “What’s the failure risk 

for Section JFCIII’s water pumps this week?” 
• Context from OLAP: Aggregated sensor trends, failure 

probabilities, historical maintenance. 
• OLAP Query (linear algebra representation): 

𝛾 Section, Machine_Type, AVG(Failure_Probability)(σSection=′JFCIII′ 
∧ Machine_Type = ’Water Pump’(Machine _Failure)) 

• Natural Language Explanation: "3 water pumps in Sec-
tion JFCIII show a high failure risk due to rising tem-
perature and frequent voltage drops." 

 
The structure data will be retrieved from the OLAP cube us-
ing vector search in Cassandra 5.0 [34]. Finally, the Sym-
bolic AI system applies expert-defined rules on ANN pre-
dictions and retrieved data, validating predictions and 
providing clear, rule-based explanations for maintenance 
decisions. Rules example: 

 

Algorithm 3: Cassandra Results Retrieval 

1: Procedure CASSANDRARESULTS (cassandra.data, scan.start, 
scan.end) 

2:  Initialize filtered.results ← { } 

3:  for each kv in cassandra.data do 

4:   if kv['row.key'] ≥ scan.start AND kv['row.key'] ≤ scan.end then 

5:    Append kv to filtered.results 

6:   end if 

7:  end for 

8:  return pd.DataFrame(filtered.results) {Convert results to DataFrame} 

Algorithm 4: Decode Encoded Cassandra Results 

1: Procedure DECODERESULTS (cassandra_results, encoding_dict) 

2:  Initialize decoded_results ← { } 

3:  for each (row_key, row_value) in cassandra_results.items() do 

4:   dimensions ← [encoding_dict[row_key[2:4]], encoding_dict[row_key[4:]]] 

5:   Append dimensions + list(row_value.values()) to decoded_results 

6:  end for 

7:  return decoded_results 



 
• IF Temperature > 80°C AND Vibration > 45Hz 

THEN Risk = High 
• IF Voltage < 200V THEN Risk = Medium 
• IF Maintenance History > 100 days THEN Risk = 

High 
Input Example: Temperature: 85°C; Vibration: 50Hz; Volt-
age: 210V; Maintenance History: 120 days; Failure Proba-
bility: 0.87.  
Output Example: "Machine at high risk: Temperature ex-
ceeds safe limits, high vibration detected, and long time 
since last maintenance." 
 This framework ensures high-performance, interpretable, 
and context-aware maintenance recommendations. 

Experimental Results 
Evaluation Metrics. To assess the performance of our 
AI/ML models, we employ metrics such as accuracy, 
R2R^2R2 Score, Residual analysis, Rule Coverage Distri-
bution, computational efficiency, etc. 
 The Figure 7 (below) illustrates the regression model's 
prediction vs. ground truth scatter plot, which demonstrates 
a strong correlation between predicted and actual machine 
failure risks, with minor deviations indicating inherent 
model uncertainty, and confirms the model’s reliability, as 
residuals are symmetrically distributed around zero, sug-
gesting minimal systematic bias.  
 
 
 
 
 
 
 
 
The Figure 8 (below) shows that LLM’s accuracy is >80% 
even for complex queries, while response time increases 
non-linearly, reflecting computational complexity growth.  
 
 
 
 

 
The Figure 9 (below) indicates that most expert-defined 
rules apply in 70–90% of cases, ensuring broad generaliza-
bility, and it demonstrates that symbolic reasoning aligns 
with ANN predictions in over 80% of cases, validating its 
role in enhancing explainability. 
 
 
 
 
 
 
 
 
 
 
RA-OLAP Performance. As the dataset size increases 
from 10,000 rows to 1,000,000 rows, the execution time 
grows linearly, with Hive MapReduce exhibiting the highest 
execution time, followed by Hive Spark, and Pre-calculated 
Cuboids demonstrating the lowest execution time. Pre-cal-
culated cuboids demonstrated a reduction of ~44% in CPU 
consumption and ~62.5% in memory usage. Also, the stand-
ard approach exhibits linear time complexity (O(n)), with 
execution time increasing from 2s to 20s as measures grow 
from 1 to 10. In contrast, the pre-computed approach main-
tains constant time complexity (O(1)), with execution time 
consistently at 0.5s, regardless of the number of measures. 

Conclusion 
We propose a framework dedicated to leveraging pre-calcu-
lated OLAP cubes stored in a NoSQL database to enable 
fast, distributed analytical processing and efficient data re-
trieval for AI-driven decision support systems. The experi-
mental results unequivocally demonstrate the capability of 
RA-OLAP in minimizing query execution time and reduc-
ing the complexity of structured data retrieval, with advan-
tageous performance in predicting drought status and crop 
productivity, as well as analyzing equipment behavior and 
determining breakdown time. The results show superior ef-
ficiency in query throughput, execution time, and scalability 
compared to traditional OLAP approaches, making RA-
OLAP a robust solution for distributed AI architectures in 
agricultural analytics. 

Method CPU% Memory Execution Concurrent Users Throughput 
Hive Star Schema 

(1M Records) 
<80% 0.95GB 300s 5 users: AVG.  360s 5 users:  0.0139s 

10 users: AVG  420s 10 users:  0.0238s 
20 users:  480s 20 users:  0.0417s 

RA-OLAP 
(1M Records) 

50%< 47.68MB 250s 5 users: AVG.  300s 5 users:  0.0167s 
10 users: AVG  350s 10 users:  0.0286s 
20 users: AVG. 400 s 20 users:  0.05s 

Table 2, Figure 6: Performance Analysis between RA-OLAP and standard Star Schema in Hive (Spark & Hadoop Engines) 
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