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Abstract 
This study explores the potential of advanced, context-aware 
machine learning algorithms, such as autoencoders, to repre-
sent longitudinal cerebrospinal fluid proteomic data, enabling 
the objective discovery of two patient strata with signifi-
cance. 

 Background, Problem, and Objective    
Parkinson’s disease (PD) is the second most common pro-
gressive neurodegenerative characterized by defective do-
paminergic neurons in the brain, causing motor and 
nonmotor symptoms, such as tremors, bradykinesia, mood 
changes and postural instability (Kouli et al. 2018). The ex-
act cause and full clinical progression of PD remain unclear 
and vary among patients due to the abnormal and heteroge-
neous nature of the disease’s progression (Balestrino and 
Schapira 2020). As a result, current treatments can manage 
motor symptoms but do not halt neurodegeneration or the 
disability progression associated with the disease, threating 
patient quality of life (Balestrino and Schapira 2020; Kouli 
et al. 2018). PD management and monitoring heavily rely on 
clinical scores, like the Unified Parkinson’s Disease Rating 
Scale (UPDRS), to assess disease severity and progression 
based on observable symptoms. However, these scores are 
subjective, affected by clinicians' judgments and patients' 
self-reported symptoms, making them prone to errors and 
variability (Martínez-Martín et al. 2015). In addition, they 
cannot capture changes in the brain's underlying biology 
which occur during the course of the disease, and are crucial 
for understanding the full trajectory. Hence, there is a grow-
ing need for more objective understanding of the disease 
progression trajectory. Cerebrospinal Fluid (CSF) has 
emerged as a promising source of biomarkers that capture 
the brain's internal environment that could complement ex-
isting PD clinical scores (Evers et al. 2019). Proteins, pep-
tides, and their abundance in CSF are closely linked to the 
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brain's neural, structural, and fluid state, making them at-
tractive candidates for providing a more reliable reflection 
of disease progression by monitoring changes in these fluids 
over time (Bader et al. 2020). With the current advance-
ments in artificial intelligence models, analyzing high di-
mensional data, such as proteomic data, became possible, 
and proved to outperform traditional statistical analysis 
methods (Stahl 2024). However, the potential of deep learn-
ing models, such as autoencoders, in creating predictive fea-
tures from longitudinal proteomic data to identify patient 
strata has yet to be fully explored. In summary, this is the 
aim of this research 

Data and Methods 
In this study, 24 records of PD patients with complete 6-year 
proteomics visit data were selected from the Accelerating 
Medicines Partnership (AMP) for Parkinson’s Disease Pro-
gram dataset on Kaggle (Kirsch et al. 2023). This dataset, 
which contains features such as patient IDs, visit months, 
protein information, and peptide abundances, was restruc-
tured into both tabular and graph forms. The proposed graph 
structure represents each patient's longitudinal data as a 
graph, where visit months are nodes. Node features include 
peptide and peptide abundance, while edge features repre-
sent the correlation strength between nodes. Feature encod-
ing was applied using Long Short-Term Memory (LSTM) 
and Graph autoencoders (Nguyen et al. 2021; Pan et al. 
2018). And those deep learning approaches were compared 
with traditional dimensionality reduction techniques, like 
Kernel Principal Component Analysis (Kernel PCA), and t-
Distributed Stochastic Neighbor Embedding (t-SNE). The 
original features and their representation were hierarchically 
clustered, with silhouette scores being used as evaluation 
metric.  The significance of overall peptide abundance vari-
ability over the years, and the differences in peptide type 
abundances between the identified groups, was confirmed 

 



through the Kruskal-Wallis H test and Permutational Multi-
variate Analysis of Variance (PERMANOVA), respectively 
(Anderson 2017). A p-value threshold of 0.05 was set to re-
ject the null hypothesis, which stated that there were no sig-
nificant differences in abundance temporal variability and 
group differences. 

Results 
For all employed feature representation algorithms, one 
component/embedding dimension and two clusters were 
found to yield the best clustering performance, leading to 
the discovery of two distinct patient groups (or clusters) by 
the LSTM Autoencoder, as shown in the heatmap in Figure 
1. The clustering had a silhouette score of 0.6901 and was 
found to be statistically significant, with a PER-MANOVA 
p-value of 0.0008 (p < 0.05), confirming that the differences 
in peptide abundance between the two groups were not due 
to chance. From Figure 2, further characteristics of the dis-
covered patient groups were observed. Plots (A) and (B) il-
lustrate the mean peptide abundance for 15 patients in group 
1 (top plots) and 7 patients in group 2 (bottom plots), repre-
sented by the bold line, with standard deviation shaded areas 
for all patients in each group over time. They also show in 
plot (A) the motor (Part-III) UPDRS scale cutoffs 
(mild/moderate and moderate/severe) represented by dotted 
lines, while the middle plots display the HY scale from 1 to 
5. Plots (C) present the peptide abundance values for all pa-
tients in the dataset who are taking Levodopa (top plot), 
compared to those who are not subject to any intervention 
(bottom plot). For Group 1 patients, peptide levels were 
found to change over time, and these changes were deter-
mined to be statistically significant, with a Kruskal-Wallis 
p-value of 0.0028. Conversely, for Group 2 patients, peptide 
levels showed a steady increase over time, without any sig-
nificant changes, although a slight increase became noticea-
ble starting from month 48. Regarding the health status of 
these patients, Cluster 2 patients were still in the early stages 
of Parkinson's disease (with mild symptoms), transitioning 
from HY1 (mild) to HY2 (more noticeable symptoms). 

However, some patients in Group 1 were already in a more 
advanced stage of the disease, reaching HY3 (severe symp-
toms). Levodopa medication is typically prescribed when 
patients begin to show uncontrolled symptoms that affect 
daily life activities (Salat & Tolosa 2013). This may explain 
the interesting peptide abundance pattern observed in Group 
1, which is like the temporal pattern seen in patients on med-
ication across the entire dataset. This suggests that the 
higher peptide levels in Group 1 may reflect the worsening 
of their disease condition, which is why medication is re-
quired to manage their symptoms. 

Conclusion 
These findings highlight how biomarkers, such as CSF bio-
fluids, combined with deep learning models and clustering 
algorithms, have led to the discovery of two patient groups. 
They also demonstrate that peptide abundance patterns can 
serve as key biomarkers for understanding and tracking dis-
ease progression. However, clinician input, result reproduc-
ibility on larger PD patients’ group, and the utility of this 
approach with other biomarkers, such as brain structural 
changes over time, as well as its extension to other neuro-
degenerative diseases, will be worth exploring. 

Figure 1: Discovered Patients Groups 

(B) Mean Peptide Patterns by Months for pa-
tients in Group 1 (top) and Group 2 (bottom) 

with Hoehn and Yahr scale (HY). 

(C) All Patients Peptide Patterns by Months: on medi-
cation (Top) and off medication (bottom). 

(A) Mean Peptide Patterns by Months for patients in Group 
1 (top) and Group 2 (bottom) with UPDRS-III Scale. 

Figure 2: Peptide abundance temporal patterns for Group 1 and Group 2 patients, illustrating disease progression, motor 
scale cutoffs, and Levodopa treatment effects. 
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